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Abstract

In this note we present a basic theory of p-adic Galois representations and (φ, Γ)-

modules. In particular, we prove a series of equivalences between both (1-)categories

over various rings following Fontaine and Cherbonnier–Colmez.
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1 Notations

Suppose K is a field.
Let GK denote the absolute Galois group of K.
Let χ : GQp → Z×

p be the cyclotomic character.
If K is a finite extension of Qp, then let K∞ be the infinite cyclotomic extension over K.

Let K0 be the maximal unramified extension of Qp in K∞ and kK∞ be the residue field of
K∞. Let HK := ker(χ|GK

) ∼= GK∞ and ΓK := GK/HK
∼= Gal(K∞/K) by local class field

theory.
For a commutative ring R, let WP (R) denote the ring of p-typical Witt vectors over R.
Let R be a topological ring and G be a topological group acting continuously on R. Let

RepR(G) denote the abelian category of continuous (finite free) R-representations of G.

2 Perfectoid rings and tiltings

The idea of the perfectoid rings is to show a correspondence between local fields of mixed
characteristic and equal characteristic. In this section, we give a brief introduction to the
basic settings in perfectoid rings, basically following [SW20].

The content of this section will not be heavily used in the following sections. We include
them here because it provides a modern approach to Corollary 2.20 and for future study in
p-adic geometry beyond this note.

2.1 Huber rings

Definition 2.1 (Huber ring). A topological ring A is Huber if A admits an open subring
A0 ⊂ A and a finitely generated ideal I ⊂ A0 such that {In : n ⩾ 0} forms a basis of
neighborhoods of 0.

Any such A0 is called a ring of definition of A.

Example 2.2. 1. (Qp,Zp) and (Qp,Qp) are both Huber.

2. If k is a perfect field of characteristic p, then (WP (k)Jx1, · · · , xnK,WP (k)Jx1, · · · , xnK)
is Huber with respect to the (p, x1, · · · , xn)-adic topology. This ring classifies defor-
mations of formal group laws and shows up further in chromatic homotopy theory.
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There is a simple characterization of a ring of definition via boundedness.

Definition 2.3 (Bounded subset). A subset S of a topological ring A is bounded if for all
open neighborhoods U of 0, there exists an open neighborhood V of 0 such that V S ⊂ U .

Lemma 2.4 (cf. [SW20, Lemma 2.2.4]). A subring A0 of a Huber ring A is a ring of definition
if and only if A0 is open and bounded.

The universal ring of definition is given by the so-called power-bounded elements.

Definition 2.5 (Power-bounded elements). Let A be a Huber ring. An element x ∈ A is
power-bounded if the subset {xn : n ⩾ 0} is bounded. Let A◦ ⊂ A be the subring of
power-bounded elements.

Proposition 2.6. 1. Any ring of definition A0 ⊂ A is contained in A◦.

2. The ring A◦ is the filtered union of the rings of definition A0 ⊂ A.

Proof. 1. Suppose x ∈ A0, so xn ∈ A0 for any n ⩾ 0. Since A0 is bounded by the above
lemma, x ∈ A◦.

2. We first show that the poset of rings of definition is filtered. Suppose A0, A′
0 ⊂ A are

rings of definition. Let A′′
0 ⊂ A be the subring generated by A0, A′

0. For any U ⊂ A

open neighborhood of 0, we want to find an open neighborhood V ⊂ A of 0 such
that V A′′

0 ⊂ U . We may assume that U is closed under addition (in fact, we can take
U = In, where I is the ideal in the definition of A and A0). Then there is an open
neighborhood U1 ⊂ A of 0 such that U1A0 ⊂ U and there is an open neighborhood
V ⊂ A of 0 such that V A′

0 ⊂ U1. Any element in A′′
0 can be written as a linear

combination ∑
i xiyi where xi ∈ A0 and yi ∈ A′

0. Thus, we have

(
∑

i

xiyi)V ⊂
∑

i

(xiyiV ) ⊂
∑

i

xiU1 ⊂
∑

i

U ⊂ U

Therefore, A′′
0 is bounded and further a ring of definition by the above lemma.

Now pick an element x ∈ A◦. Suppose A0 is a ring of definition. Then A0[x] is still a
ring of definition since it is still bounded.
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Definition 2.7 (Uniform Huber ring). A Huber ring A is uniform if A◦ is bounded, or
equivalently, A◦ is a ring of definition.

Definition 2.8 (Huber pair and ring of integral elements). A Huber pair is a pair (A, A+),
where A is a Huber ring and A+ ⊂ A is an open and integrally closed subring of A.

Such A+ is called a ring of integral elements.

Let A◦◦ ⊂ A be the subset of topologically nilpotent elements. For any x ∈ A◦◦, xn ∈ A+

for n large enough since A+ is open. Therefore, x must lie in A+ since A+ is integrally closed,
so we have A◦◦ ⊂ A+ for any ring of integral elements A+.

To sum up, we have the following inclusions between subrings in a Huber ring A.

A◦◦ A+ A◦ A

A0
∪

A0

∼

where the union is filtered and is taken over all rings of definition A0 in A.

2.2 Perfectoid rings

Definition 2.9 (Tate ring and pseudo-uniformizer). A Huber ring A is Tate if it contains a
topologically nilpotent unit. A pseudo-uniformizer in A is a topologically nilpotent unit.

Definition 2.10 (Perfectoid ring and perfectoid field). A complete Tate ring R is perfectoid

if R is uniform and there exists a pseudo-uniformizer $ of R lives in R◦ such that p divides
$p in R◦, and the p-th power Frobenius map

φ : R◦/$ → R◦/$p

is an isomorphism.
A perfectoid field is a perfectoid ring R which is a non-archimedean field.

Proposition 2.11. Suppose R is a complete Tate ring that admits a pseudo-uniformizer
$ of R lives in R◦ such that p divides $p in R◦. Then the p-th power Frobenius map
φ : R◦/$ → R◦/$p is an isomorphism if and only if the Frobenius map R◦/p → R◦/p is
surjective.

In particular, the above definition does not depend on the choice of $.
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Proof. If x ∈ R◦ and xp = $py for some y ∈ R◦, then (x/$)p ∈ R◦. By the definition of
R◦, x/$ ∈ R◦. Therefore, φ is always injective.

We have a commutative diagram.

R◦ R◦/p R◦/p

R◦/$ R◦/$pφ

Thus, the surjectivity of the Frobenius on R◦/p implies the surjectivity of φ.
Conversely, if φ is surjective, then for any x ∈ R◦, we can approximate x successively via

φ since $ is topologically nilpotent and R is complete, i.e., x = xp
0 + xp

1$p + xp
2$2p + · · · for

some x0, x1, · · · ∈ R◦. Thus, x− (x0 + x1$ + x2$
2 + · · · ) ∈ pR◦.

Proposition 2.12 (cf. [SW20, Proposition 6.1.6]). Let R be a complete Tate ring of char-
acteristic p. Then R is perfectoid if and only if R is perfect.

Proposition 2.13 (cf. [SW20, Proposition 6.1.9]). Let K be a non-archimedean field. Then
K is a perfectoid field if and only if the following conditions hold.

1. K is not discretely valued.

2. |p| < 1.

3. φ : OK/p→ OK/p is surjective.

We give the following examples of perfectoid rings without proof. Some of them can be
found in [SW20, Example 6.1.5].

Example 2.14. 1. If A is perfectoid, A◦ is also perfectoid.

2. By the above criterion, Qp is not perfectoid, nor any finite extension of Qp.

3. The p-adic completion Cp of Qp is perfectoid.

4. The p-adic completion Qcycl
p of Qp(µp∞) is perfectoid.

5. The integer rings of Cp and Qcycl
p are also perfectoid.

6. Suppose K is a finite extension of Qp. Fix a uniformizer π of K and a Lubin-Tate
formal group law F ∈ OKJX, Y K. Then the p-adic completion of Kπ associated to F

in explicit local class field theory by Lubin and Tate is a perfectoid field.

7. The T -adic completion Fp((T 1/p∞)) of Fp((T ))(T 1/p∞) is perfectoid.
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2.3 Tilting and the equivalence of étale sites

Definition 2.15 (Tilt). Let R be a perfectoid ring. The tilt of R is

R[ := lim
x 7→xp

R

with the limit topology. A priori this is only a topological multiplicative monoid. In particular,
we have a continuous and multiplicative map (−)] : R[ → R projecting to the first coordinate.
Furthermore, we can promote R[ to a topological ring where the addition is given by

(x0, x1, · · · ) + (y0, y1, · · · ) := (z0, z1, · · · )

where
zi := lim

n→+∞
(xi+n + yi+n)pn

.

Note that (−)] is not additive.

Lemma 2.16 (cf. [SW20, Lemma 6.2.2]). 1. The above addition promotes R[ to a topo-
logical perfect Fp-algebra.

2.
R[◦ ∼= R◦[ := lim

x 7→xp
R◦ ∼= lim

x 7→xp
R◦/p ∼= lim

φ
R◦/$

where $ ∈ R◦ is a pseudo-uniformizer which divides p in R◦.

3. There exists a pseudo-uniformizer $ of R lives in R◦ such that p divides $p in R◦,
and admits a sequence of p-th power roots $1/pn in R◦, and the sequence $[ :=

($, $1/p, · · · ) ∈ R[◦ is a pseudo-uniformizer of R[. Furthermore, R[ = R[◦[1/$[].

Remark 2.17. Suppose K is a perfectoid field. Then the composition K[ (−)]

−→ K
|·|→ R⩾0

promotes K[ to a complete non-archimedean field of characteristic p.

Example 2.18 (cf. [SW20, Example 6.2.4]). Let ζp, ζp2 , · · · be a compatible system of p-
th power roots of unity in Qcycl

p , ε := (1, ζp, ζp2 , · · · ) ∈ (Qcycl
p )[. Then π̄ := ε − 1 is a

pseudo-uniformizer of (Qcycl
p )[. In fact, (Qcycl

p )[ ∼= Fp((T 1/p∞)) sending π̄ to T .

Theorem 2.19 (The equivalence of étale sites, cf. [SW20, Theorem 7.3.1 and Theorem
7.3.2]). Let K be a perfectoid field. Then there is an equivalence between the sites of finite
étale algebras over K and over K[.
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Corollary 2.20. We have that G(Qcycl
p )[
∼= GQcycl

p

∼= HQp .

Thus, instead of working over Qcycl
p , we can move to its tilt, which is of characteristic p.

3 Travel through a series of rings

Now we will define a series of rings in p-adic Galois representations. The goal is to transfer
from the original base rings of p-adic Galois representations, such as Fp,Zp and Qp, to rings
that carry more structures while preserve the Galois groups.

Various but similar notations of rings are very confusing for a first read. It is always a
good idea to keep in mind a picture of ring extensions. The rules of naming the rings are the
following.

The letter A stands for a topological ring with a non-archimedean valuation, B stands for
inverting p in A (most time B stands for a field and A will stand for the integer ring of B),
and E stands for the reduction of A modulo p. The rings with tilde will always be larger than
the one without tilde.

3.1 Rings of characteristic p

We will start with the series of rings named by E, which will deal with the p-adic Galois
representations over Fp.

Let Ẽ := C[
p, ẼQp := (Qcycl

p )[ and EQp := Fp((T )). Let ε := (1, ζp, ζp2 · · · ) for a chosen
compatible system of p-th power roots of unity and π̄ := ε − 1 as in Example 2.18. Define
the non-archimedean valuation valE on Ẽ via Remark 2.17. Then

valẼ(π̄) = valp( lim
n→+∞

(ζpn − 1)pn) = lim
n→+∞

pnvalp(ζpn − 1) = p

p− 1
> 0.

Thus, there is an inclusion EQp ↪→ ẼQp given by T 7→ π̄. Let E := Fp((T ))sep in Ẽ. In other
words, we have the following diagram of field extensions.

C[
p =: Ẽ E := Fp((T ))sep

(Qcycl
p )[ =: ẼQp EQp := Fp((T ))
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All of these rings are characteristic p. Thus, they carry an action by the Frobenius map
φ. Note that Ẽ and ẼQp are perfect while E and EQp are not. Furthermore, Ẽ := C[

p carries
an action by GQp component-wise.

Theorem 3.1 (cf. [Ber10, Theorem 15.4]). The canonical map HQp
∼= GẼQp

→ Gal(E/EQp)

is an isomorphism.

Recall that the first isomorphism here is given by Corollary 2.20.
If K is a finite extension of Qp, let EK := EHK , which is a finite extension of EQp by the

above theorem and Galois correspondence.

Lemma 3.2. If π̄K is a uniformizer of EK , then T 7→ π̄K defines an isomorphism kK∞((T )) ∼=

EK .

Proof. Since EK is a finite extension of EQp := Fp((T )) and the residue field of EK is kK∞ ,
we conclude by the structure theorem for local fields of equal characteristic.

We have the following generalization of Hilbert’s Theorem 90 and its corollary.

Proposition 3.3 (cf. [Ber10, Corollary 7.3]). Let L/K be a Galois extension with G :=

Gal(L/K). If we equip L with the discrete topology, then H1
cts(G, L) = 0 and H1

cts(G, GLn(L)) =

0 for all n ⩾ 1.

Theorem 3.4. If K is a finite extension of Qp, then H1
cts(HK , E) = 0 and H1

cts(HK , GLn(E)) =

0 for all n ⩾ 1. Here E is equipped with the discrete topology.

3.2 Rings of characteristic 0

Next, we will introduce the series of rings named by A and B, which will deal with p-adic
Galois representations over Zp and Qp respectively.

A canonical way to transfer from characteristic p to characteristic 0 is via the p-typical ring
of Witt vectors. However, since E is not perfect, WP (E) is not well-behaved (say, WP (E) is
not p-adically complete and elements in WP (E) do not have a series representation). Thus,
we need more works to lift the rings E and EQp to characteristic 0.

Firstly, we want to introduce the weak topology on the ring of p-typical Witt vectors.
Suppose R is a perfect ring of characteristic 0 complete with respect to a valuation val.
Then for each k > 0, define wk : WP (R) → R ∪ {+∞} by wk(x) := infi⩽k val(xi) for
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x = ∑
i>0 pi[xi]P in WP (R), where [−]P is the Teichmüller representative. Then wk(x) = +∞

if and only if x ∈ pk+1WP (R) and wk(x + y) ⩾ inf(wk(x), wk(y)) for all x, y ∈WP (R).

Definition 3.5 (Weak topology on the ring of p-typical Witt vectors). The weak topology

on WP (R) is the topology defined by wk for all k.

Proposition 3.6 (cf. [Ber10, Proposition 16.4]). The ring WP (R) is complete with respect
to the weak topology.

Let Ã := WP (Ẽ) := WP (C[
p) and B̃ := Ã[1/p] := WP (C[

p)[1/p]. Note that Ã is
equipped with both p-adic topology and the weak topology discussed above. Furthermore,
Ã is complete with respect to both topologies. We equip B̃ = ∪k>0p

−kÃ with the colimit
topologies of the p-adic topology and the weak topology on Ã respectively. As a ring of Witt
vectors, Ã is equipped with a Frobenius map φ. Also, there is a lift of the GQp-action on Ẽ

to Ã.
In order to lift the rings E and EK to characteristic 0, where K is a finite extension of

Qp, let AK := (WP (kK∞)((T )))∧
p and BK := AK [1/p]. Similar to the inclusions EQp ↪→

ẼQp ↪→ Ẽ, we have an inclusion AK ↪→ Ã given by T 7→ [π̄K ]P , where π̄K is a uniformizer
of EK

∼= kK∞((T )) ↪→ Ẽ. Note that wk([π̄K ]) = valE(π̄K) > 0, so this map is well-defined.
This map also extends to an inclusion BK ↪→ B̃.

Let A := (colimKAK)∧
p and B := A[1/p], where K runs through all finite extensions of

Qp. Then A/pA ∼= colimKEK = E. By construction, AK inherits a GQp-action from Ã and
is fixed by HK .

Lemma 3.7 (cf. [BC09, Lemma 13.5.7]). For each finite extension K of Qp, AHK = AK .

Since we mapped T to [π̄K ]P in the construction of AK , AK is φ-stable in Ã. Thus, A

and B are φ-stable in Ã.
The following proposition is a corollary of Proposition 3.3.

Proposition 3.8 (cf. [Ber10, Proposition 7.4]). Let $ be a topologically nilpotent element
of a ring R which is complete for the $-adic topology and in which $ is not a zero divisor.
Let G be a group which acts on R continuously and fixes $.

If H1
cts(G, GLn(R/$R)) = H1

cts(G, R/$R) = 0 and the map GLn(R) → GLn(R/$R)

is surjective, then H1
cts(G, GLn(R)) = H1

cts(G, R) = 0.
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Theorem 3.9. If K is a finite extension of Qp, then H1
cts(HK , A) = 0 and H1

cts(HK , GLn(A)) =

0 for all n ⩾ 1. Here A is equipped with the p-adic topology.

Proof. Note that p is a topologically nilpotent element of A, A is p-complete and p is not
a zero-divisor in A. Every lift of GLn(E) to Matn(A) has determinant not in pA. Since
A/pA ∼= E is a field, every lift is invertible. Therefore, we conclude by the above proposition
and Theorem 3.4.

Note that B/BK is not algebraic, so we cannot prove H1
cts(HK , B) = H1

cts(HK , GLd(B)) =

0 via Proposition 3.3. Besides, we cannot use the above proposition since B is a field.
To sum up, we have the following diagram of extensions of rings.

Ẽ := C[
p Ã := WP (C[

p) B̃ := WP (C[
p)[1/p]

E A B

EK
/p← AK

1/p→ BK

EQp AQp BQp

HK HK

HQp

HK

HQpHQp

where the rings without tilde named by E, A and B are Laurent series, p-adic completion
of Laurent series and p-adic completion of Laurent series inverting p over various coefficients
respectively.

4 (φ, Γ)-modules

In this section, we prove a series of equivalences between the (1-)categories of Galois repre-
sentations and (φ, Γ)-modules, which reduces Galois representations to some explicit objects
that we can compute with.

Let R substitute for one of the letters E, A and B in this paragraph. Conceptually,
for a finite extension K of Qp, the construction of RK has and only has contained all the
ramification information (by which we mean K∞), so that HK acts freely on R and RHK =

RK . Therefore, we can reduce Galois representations over R to the totally ramified part by
taking the HK-fixed points, which is controlled by ΓK . On the other hand, the information
of unramified part is determined by the action of Frobenius map φ.
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4.1 Definition of (φ, Γ)-modules

In this subsection, suppose R is a commutative ring with an endomorphism σ.

Definition 4.1 (φ-module). A φ-module over R is a R-module M together with a σ-
semilinear endomorphism φ : M → M , i.e., φ is additive and φ(rm) = σ(r)φ(m) for all
r ∈ R and m ∈M .

Equivalently, a φ-module over R is a R-module M with a R-linear morphism Φ: M →

σ∗M .

For simplicity, we will only denote a φ-module (M, Φ) by the underlying module M .

Definition 4.2 (Étale φ-module). An étale φ-module over R is a φ-module M such that
Φ is an isomorphism.

The following is an easy lemma. We omit the proof.

Lemma 4.3. If D is a finite free φ-module of dimension n over R, then D is étale if and
only if Mat(φ) ∈ GLn(R).

Suppose Γ is a group and R is equipped with an action of Γ, which commutes with σ.

Definition 4.4 ((φ, Γ)-module). A (φ, Γ)-module over R is a φ-module with a semilinear
Γ-action commuting with φ.

Similarly, we will only denote a (φ, Γ)-module by its underlying module.
Suppose now that R and Γ are both equipped with Hausdorff and complete topology. In

addition, suppose that R is a Noetherian flat R-algebra via the structure continuous map σ.

Definition 4.5 (Étale (φ, Γ)-module). An étale (φ, Γ)-module over R is a (φ, Γ)-module
over R such that φ and the Γ-action is continuous, and it is étale as a φ-module.

Let Modét
R(φ, Γ) denote the abelian category of (φ, Γ)-modules over R (cf. [FO22, Propo-

sition 3.19]).

Remark 4.6. When we discuss étale (φ, Γ)-modules over EK , we consider the topology given
by valE.

When we discuss étale (φ, Γ)-modules over AK and BK , we consider the weak topology
on them.

Notation. For simplicity (and as done in many references, such as [Ber10]), we will assume
that all φ-modules and (φ, Γ)-modules are finite free.
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4.2 (φ, Γ)-modules and p-adic Galois representations

Suppose G is a topological group, R is a topological commutative ring with a continuous
G-action and M is a finite free R-module of dimension n with a continuous semilinear G-
action. Pick a basis e for D. Then the map G → GLn(R) given by g 7→ Mate(g) is an
1-cocycle in C1

cts(G, GLn(R)). If we choose another basis for D, the 1-cocycle will differ by
an 1-coboundary. Furthermore, it gives us a (non-canonical) bijection of sets

{semilinear representations of G of dimension n}/isomorphisms ∼= H1(G, GLn(R)).

By the above discussion and Theorem 3.9 and Theorem 3.4, we get the following.

Corollary 4.7. Suppose K is a finite extension of Qp. Every semilinear representation of HK

of dimension n over A and E is (non-canonically) isomorphic to An and En respectively.

In the rest of this section, suppose K is a finite extension of Qp.

Proposition 4.8. Suppose V is a Fp-representation of GK of dimension n and D(V ) :=

(E⊗Fp V )HK . Then D(V ) is an étale (φ, ΓK)-module over EK of dimension n, E⊗EK
D(V ) ∼=

E ⊗Fp V in the category of (φ, GK)-modules via the map λ ⊗ x 7→ λx. In particular,
V ∼= (E ⊗EK

D(V ))φ=1 via the above isomorphism.

Proof. By Corollary 4.7, E ⊗Fp V ' En in the category of representations of HK over E.
Therefore, D(V ) ∼= En

K in the category of EK-modules. Since φ commutes with the HK-
action on E, D(V ) promotes to a φ-module over EK . Since the remaining ΓK-action on
D(V ) acts trivially on E, it commutes with φ. Thus, D(V ) promotes to a (φ, ΓK)-module
over EK .

Now we show that D(V ) is étale. Suppose e = (ei) is a Fp-basis for V , f = (fi) is
an EK-basis for D(V ) and f = eA for some A ∈ GLn(E). Suppose φ(f) = fB for some
B ∈ Matn(EK). Then eφ(A) = φ(f) = fB = eAB. Thus, B = A−1φ(A) ∈ GLn(EK),
which implies that D(V ) is étale.

Since dim(D(V )) = dim(V ), there is an E-basis of E ⊗Fp V lives in D(V ). Thus,
E ⊗EK

D(V ) ∼= E ⊗Fp V via the map λ ⊗ x 7→ λx. This morphism commutes with φ

and the GK-action. Thus, this isomorphism promotes to an isomorphism in the category of
(φ, ΓK)-modules.

Since Fp = Eφ=1, V ∼= (E ⊗EK
D(V ))φ=1.
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Actually, the functor D is an equivalence. To prove this, we need the following theorem.

Theorem 4.9 (cf. [Ber10, Theorem 8.6]). If k is a separably closed field of characteristic p,
and V is an étale φ-module over k, then V admits a basis fixed by φ and 1 − φ : V → V is
surjective.

Proposition 4.10. Suppose D is an étale (φ, ΓK)-module over EK of dimension n. Then
(E ⊗EK

D)φ=1 is a Fp-representation of GK of dimension n and E ⊗Fp (E ⊗EK
D)φ=1 ∼=

E ⊗EK
D in the category of (φ, GK)-modules via the map λ ⊗ x 7→ λx. In particular,

D ∼= (E ⊗Fp (E ⊗EK
D)φ=1)HK via the above isomorphism.

Proof. Since E ∼= Fp((T ))sep is separably closed of characteristic p, E ⊗EK
D admits a basis

fixed by φ by Theorem 4.9. Therefore, (E ⊗EK
D)φ=1 has dimension n.

The remaining proof is similar to the one of Proposition 4.8.

Therefore, we have established the following equivalence of categories.

Theorem 4.11. There is an equivalence of abelian categories RepFp
(GK) ∼= Modét

EK
(φ, ΓK)

given by V 7→ (E ⊗Fp V )HK and D 7→ (E ⊗EK
D)φ=1 for V ∈ RepFp

(GK) and D ∈

Modét
EK

(φ, ΓK).

By Theorem 3.9, one can prove the following proposition mimicking the proof of Propo-
sition 4.8.

Proposition 4.12. Suppose V is a Zp-representation of GK of dimension n and D(V ) :=

(A⊗Zp V )HK . Then D(V ) is an étale (φ, ΓK)-module over AK of dimension n, A⊗AK
D(V ) ∼=

A ⊗Zp V in the category of (φ, GK)-modules via the map λ ⊗ x 7→ λx. In particular,
V ∼= (A⊗AK

D(V ))φ=1 via the above isomorphism.

By successive approximation, we have the following corollary of Theorem 4.9.

Corollary 4.13. If R is a commutative ring which is complete with respect to the p-adic
topology, R/pR is a separably closed field of characteristic p, R is equipped with a Frobenius
endomorphism φ lifting the Frobenius on R/pR, and V is an étale φ-module over R, then V

admits a basis fixed by φ and 1− φ : V → V is surjective.

Similarly, we have the following proposition for A and Zp and the equivalence of categories.

14



Proposition 4.14. Suppose D is an étale (φ, ΓK)-module over AK of dimension n. Then
(A ⊗AK

D)φ=1 is a Zp-representation of GK of dimension n and A ⊗Zp (A ⊗AK
D)φ=1 ∼=

A ⊗AK
D in the category of (φ, GK)-modules via the map λ ⊗ x 7→ λx. In particular,

D ∼= (A⊗Zp (A⊗AK
D)φ=1)HK via the above isomorphism.

Theorem 4.15. There is an equivalence of abelian categories RepZp
(GK) ∼= Modét

AK
(φ, ΓK)

given by V 7→ (A ⊗Zp V )HK and D 7→ (A ⊗AK
D)φ=1 for V ∈ RepZp

(GK) and D ∈

Modét
AK

(φ, ΓK).

As said at the end of Section 3.2, there is no analog of Hilbert’s theorem 90 for B. Hence,
we can only derive the equivalence of categories from the results for AK . To do this, we need
to modify the definition for étale (φ, ΓK)-modules over BK as follows.

Definition 4.16 (Étale (φ, ΓK)-modules over BK). An étale (φ, ΓK)-module over BK

is a (φ, ΓK)-module D of dimension n over BK such that there is a basis for D in which
Mat(φ) ∈ GLn(AK).

Lemma 4.17. Every continuous Qp-representation V of dimension n of GK admits a Zp-
lattice stable under GK .

Proof. Pick a basis for V . The basis spans a Zp-lattive L of V . Since Zp is open in Qp,
GLn(Zp) = GLn(Qp) ∩Matn(Zp) is an open subgroup of GLn(Qp). Thus, the subgroup H

of GK consisting of elements g such that gL ⊂ L is an open subgroup of GK . Since GK

is compact, H is of finite index. Then ∑
g∈G gT is a finite sum and is a stable Zp-lattice in

V .

Proposition 4.18. Suppose V is a Qp-representation of GK of dimension n and D(V ) :=

(B⊗QpV )HK . Then D(V ) is an étale (φ, ΓK)-module over BK of dimension n, B⊗BK
D(V ) ∼=

B ⊗Qp V in the category of (φ, GK)-modules via the map λ ⊗ x 7→ λx. In particular,
V ∼= (B ⊗BK

D(V ))φ=1 via the above isomorphism.

Proof. By the above lemma, pick a stable Zp-lattice L of B. By Theorem 3.9, A⊗ZpL ' An

as an A-representation of HK . Thus, B ⊗Qp V ' Bn as B-representations of HK . The
remaining proof is similar to Proposition 4.8.

It remains to show that D(V ) is étale. Note that

BK ⊗AK
D(L) := BK ⊗AK

(A⊗Zp L)HK ∼= (BK ⊗AK
A⊗Zp L)HK ∼= (B ⊗Zp L)HK ∼= D(V )

15



in the category of (φ, ΓK)-modules. Therefore, an AK-basis for D(L) induces a BK-basis
D(V ). Thus, D(V ) is étale.

Proposition 4.19. Suppose D is an étale (φ, ΓK)-module over BK of dimension n. Then
(B ⊗BK

D)φ=1 is a Qp-representation of GK of dimension n and B ⊗Qp (B ⊗BK
D)φ=1 ∼=

B ⊗BK
D in the category of (φ, GK)-modules via the map λ ⊗ x 7→ λx. In particular,

D ∼= (B ⊗Qp (B ⊗BK
D)φ=1)HK via the above isomorphism.

Proof. Since D is étale over BK , there is a submodule D0 of D such that D ∼= BK ⊗AK
D0

as φ, ΓK-modules. Then Theorem 4.15 implies that A ⊗AK
D0 ∼= A ⊗Zp (A ⊗AK

D0)φ=1.
Thus,

B ⊗BK
D ∼= B ⊗AK

D0 ∼= B ⊗Zp (A⊗AK
D0)φ=1 ∼= B ⊗Qp (Qp ⊗Zp (A⊗AK

D0)φ=1)

in the category of (φ, ΓK)-modules. Since Bφ=1 = Qp, Qp ⊗Zp (A ⊗AK
D0)φ=1 ∼= (B ⊗BK

D)φ=1.

Therefore, we have finally proved the following theorem.

Theorem 4.20. There is an equivalence of abelian categories RepQp
(GK) ∼= Modét

BK
(φ, ΓK)

given by V 7→ (B ⊗Qp V )HK and D 7→ (B ⊗BK
D)φ=1 for V ∈ RepQp

(GK) and D ∈

Modét
BK

(φ, ΓK).

5 Robba rings

In this section, we will just rush through the construction of the Robba ring and its properties
without any proof. We recommend [Wan20] for detailed proofs.

5.1 Overconvergent elements

Recall that Ẽ := C[
p, Ã := WP (C[

p) and for each k > 0, wk : Ã → R ∪ {+∞} is given by
wk(x) := infi⩽k valẼ(xi) for any x = ∑

i>0 pi[xi] ∈WP (C[
p).

For any r > 0, let

Ã†,r := {x ∈ Ã : wk(x) + k
pr

p− 1
⩾ 0 for all k > 0 and lim

k→+∞

(
wk(x) + k

pr

p− 1
)

= +∞}

Note that if r2 > r1 > 0, then Ã†,r2 ⊃ Ã†,r1 .
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Lemma 5.1 (cf. [Wan20, Lemma 1.4]). The set Ã†,r is a subring of Ã which is stable under
GQp and φ : Ã†,r → Ã†,pr is a bijection.

Let νr : Ã†,r → R⩾0 given by νr(x) := infk>0(wk(x)+k pr
p−1). The following lemma shows

that this is a valuation on Ã†,r. It will make Ã†,r into a complete valuation ring, whose
topology is compatible with the action of GQp and the map φ.

Lemma 5.2 (cf. [Wan20, Lemma 1.5]). For any r > 0 and x, y ∈ Ã†,r,

1. νr(x) = +∞ if and only if x = 0.

2. νr(x + y) ⩾ inf(νr(x), νr(y)).

3. νr(xy) = νr(x) + νr(y).

4. νpr(φ(x)) = pνr(x).

5. νr(px) = νr(x) + pr
r−1 .

6. νr(σ(x)) = νr(x) for all σ ∈ GQp .

Proposition 5.3 (cf. [Wan20, Proposition 1.7]). The ring Ã†,r is Hausdorff and complete
with respect to the topology given by νr.

Lemma 5.4. For all r > 0, the action of GQp on Ã†,r is continuous and φ : Ã†,r → Ã†,pr is
a homeomorphism.

As before, let B̃†,r := Ã†,r[1/p]. We can extend νr to B̃†,r via the 5-th part of Lemma 5.2.
Note that Lemma 5.2 also holds for B̃†,r. Furthermore, for each finite extension K of Qp, let
B̃†,r

K := (B̃†,r)HK and Ã†,r
K := (Ã†,r)HK . Let B̃† := ∪r>0B̃

†,r.

Remark 5.5. The ring Ã†,r is not the ring of integers in B̃†,r, but is the ring of integers in
B̃†,r ∩ Ã.

Similarly, let B†,r := B̃†,r ∩B, B†,r
K := (B†,r)HK , B† := ∪r>0B

†,r and B†
K := ∪r>0B

†,r
K .

Proposition 5.6 (cf. [Wan20, Proposition 1.9]). The ring B̃† is a field. As a consequence,
B̃†

K , B† and B†
K are fields.
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5.2 Robba rings

Lemma 5.7 (cf. [Ber10, Lemma 22.1]). Suppose K is a finite extension of Qp. There exists
r(K) > 0 and π†

K ∈ A
†,r(K)
K , such that the image πK of π†

K in EK is a uniformizer and
π†

K/[πK ]P is a unit in A
†,r(K)
K .

Suppose K is an extension of Qp and r > 0. Let Ar
K be the ring of formal power series

f(T ) = ∑
n∈Z anT n with coefficients in OK , such that valp(an) + nr ⩾ 0 for all n and

limn→−∞(valp(an) + nr) = +∞. For any f ∈ Ar
K , define ωr(f) = infn∈Z(valp(an) + nr). It

can be easily shown that ωr is a valuation on Ar
K . Therefore, Ar

K is isomorphic to the ring
of analytic functions with coefficients in OK convergent on the annulus {0 < valp(T ) ⩽ r}

and bounded by 1 with respect to the norm associated to ωr. Let Br
K := Ar

K [1/p]. We can
also extend ωr to Br

K . Then Br
K is isomorphic to the ring of bounded analytic functions with

coefficients in K convergent on the annulus {0 < valp(T ) ⩽ r}.
Let eK := [K∞ : (K0)∞], which is the ramification index of K∞/(Qp)∞.

Theorem 5.8 (cf. [Wan20, Theorem 1.23]). For all r > rK ,

1. there is an isomorphism of topological rings A
1

reK
K0 → A†,r

K given by f 7→ f(π†
K) such

that pr
p−1ω 1

reK

(f) = νr(f(π†
K)), and

2. there is an isomorphism of topological rings B
1

reK
K0 → B†,r

K given by f 7→ f(π†
K) such

that pr
p−1ω 1

reK

(f) = νr(f(π†
K)).

6 Cherbonnier–Colmez’s theorem

Recall that in Section 4.2, we proved the equivalences between p-adic Galois representations
and (φ, Γ)-modules. In this subsection, we want to push the equivalence further to (φ, Γ)-
modules over overconvergent elements, which is the Cherbonnier–Colmez’s theorem. To do
this, we need to introduce the technique by Colmez-Sen-Tate to overcome the absence of
generalized Hilbert’s theorem 90.

6.1 The Colmez–Sen–Tate conditions

Let K be a finite extension of Qp, Ω̃ be a Qp-algebra and valΩ : Ω̃→ R ∪ {+∞} be a map
such that
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1. valΩ(x) = +∞ if and only if x = 0.

2. valΩ(x + y) ⩾ inf(valΩ(x), valΩ(y)).

3. valΩ(xy) ⩾ valΩ(x) + valΩ(y).

4. valΩ(p) > 0 and valΩ(px) = valΩ(p) + valΩ(x) if x ∈ Ω̃.

Assume that Ω̃ is complete with respect to the topology defined by valΩ and Ω̃ is equipped
with a GK-action such that valΩ is GK-invariant.

We say that Ω̃ satisfies the Colmez–Sen–Tate conditions if there exists constants c1, c2, c3 ∈

R⩾0 such that the following three conditions hold.

(CST1) For every finite extension M/L of K, there exists α ∈ Ω̃HM such that valΩ(α) > −c1

and TrM∞/L∞(α) = 1.

(CST2) For every finite extension L of K, there exists n(L) ∈ Z>0 and an increasing sequence
{ΩL,n}n⩾n(L) of closed sub-Qp-algebras of Ω̃HL along with maps RL,n : Ω̃HL → ΩL,n

satisfying the following properties.

(a) If x ∈ Ω̃HL , then valΩ(RL,n(x)) ⩾ valΩ(x)− c2 and RL,n(x)→ x as n→∞.

(b) If L2/L1 is finite, then ΩL1,n ⊂ ΩL2,n and RL2,n|Ω̃HL1 = RL1,n.

(c) RL,n is ΩL,n-linear and is the identity on ΩL,n.

(d) If g ∈ GK , then g(ΩL,n) = Ωg(L),n and g ◦RL,n = Rg(L),n ◦ g.

Let ΩL,∞ := ∪n⩾n(L)ΩL,n.

(CST3) For every finite extension L of K, there exists m(L) ⩾ n(L) such that for all γ ∈ ΓL

and n ⩾ sup(valp(χ(γ) − 1), m(L)), 1 − γ is invertible on XL,n := (1 − RL,n)(Ω̃HL)

and valΩ((γ − 1)−1x) ⩾ valΩ(x)− c3 for all x ∈ XL,n.

Example 6.1 (cf. [Ber10, §10 and §19]). Let Ω̃ := Cp with p-adic valuation, ΩL,n := Ln be
the finite totally ramified extension over L constructed by Lubin-Tate and Rn is the Tate’s
normalized traces. Then Ω̃ satisfies the CST conditions.

The point of the CST conditions is that we can reduce RepΩ̃(GK) to RepΩL,n
(Gal(L∞/K))

for some finite extension L of K and n ⩾ n(L). In particular, the reduction have two steps.

19



1. The condition CST1 helps us to reduce to RepΩ̃HL (Gal(L∞/K)) (cf. [Ber10, Corollary
19.3]). This result is similar to the generalized Hilbert’s theorem 90.

2. The conditions CST2 and CST3 together approximate RepΩ̃HL (Gal(L∞/K)) through
RepΩL,n

(Gal(L∞/K)) (cf. [Ber10, Corollary 19.5]).

To be precise, we have the following theorems.

Theorem 6.2 (cf. [Ber10, Theorem 19.1]). If Ω̃ satisfies the CST conditions, then

colimLcolimn⩾n(L)H
1(Gal(L∞/K), GLd(ΩL,n)) ∼= H1(GK , GLd(Ω̃))

where the isomorphism is induced by the inflation maps.

Theorem 6.3 (cf. [Ber10, Theorem 19.6 and Theorem 19.8]). Suppose W ∈ RepΩ̃(GK) of
dimension d. There exists a finite extension L of K and a finite free ΩL,∞-submodule WL,∞ ⊂

W HL of dimension d such that WL,∞ is stable under Gal(L∞/K) and WL,∞ ⊗ΩL,∞ Ω̃ ∼= W

in RepΩ̃(GK).
Furthermore, WL,∞ is the greatest ΩL,∞-sub-representation of Gal(L∞/K) of W HL .

Proposition 6.4 (cf. [Ber10, §24]). Let K := Qp. There exists rK > 0, such that for all
r > rK , Ω̃ := B̃†,r with valΩ := νr and ΩL,n := φ−n(B†,pnr

L ) satisfy the CST conditions with
some maps RL,n defined in [Ber10, §24].

6.2 Cherbonnier–Colmez’s theorem

Theorem 6.5 (Cherbonnier–Colmez). Suppose K is a finite extension of Qp. The functor
V 7→ D†(V ) := (B†⊗QpV )HK induces an equivalence between RepQp

(GK) and Modet
B†

K
(φ, ΓK),

where a (φ, ΓK)-modules over B†
K is étale if it is after base-changing to BK .

By definition, Modet
B†

K
(φ, ΓK) ∼= Modet

BK
(φ, ΓK) by base-changing. Thus, we remain to

show that D† is well-defined and D(V ) is naturally isomorphic to BK ⊗B†
K

D†(V ), where
D(V ) := (B ⊗Qp V )HK as in Theorem 4.20.

The theorem is deduced from the following lemma and proposition. The idea is that firstly
we use the CST-method to reduce to a Gal(L∞/K)-submodule D†,r

L of D†(V ) depending on
the radius of convergence r. Since φ induces a homeomorphism B̃†,r → B̃†,pr for all r > 0

and the matrix of φ has only finite entries, we can raise the radius of convergence large enough
to promote D†,r

L to a (φ, ΓK)-module. Finally, we extend the coefficient to get D†(V ).
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Lemma 6.6. For any V ∈ RepQp
(GK) of dimension d, there is a finite extension L of K

and s(V ) ∈ R>0 such that for all s ⩾ s(V ), (B̃†,s ⊗Qp V )HL has a free B†,s
L -submodule D†,s

L

of dimension d such that D†,s
L is stable under GK , B̃†,s ⊗B†,s

L
D†,s

L
∼= B̃†,s ⊗Qp V via the map

λ⊗ x 7→ λx and D†
L := B†

L ⊗B†,s
L

D†,s
L ↪→ B̃† ⊗Qp V is stable under φ.

Proof. Fix r > 0 such that (B̃†,r, νr, φ−n(B†,pnr
L )) satisfies the CST conditions. By The-

orem 6.2, there is a finite extension L of K, n ∈ Z>0 and a finite free φ−n(B†,pnr
L )-

submodule D†,r
L,n of (B̃†,r ⊗Qp V )HL such that D†,r

L,n is of dimension d and stable under GK

and B̃†,r ⊗
φ−n(B†,pnr

L ) D†,r
L,n
∼= B̃†,r ⊗Qp V .

We want the coefficient to be in B†,pnr
L , but not in φ−n(B†,pnr

L ). Let D†,pnr
L := φn(D†,r

L,n)

in B̃†⊗Qp V . Then D†,pnr
L is stable under GK . Since φ is injective, D†,pnr

L is still finite free of
dimension d. Moreover, we have B̃†,pnr ⊗

B†,pnr
L

D†,pnr
L
∼= B̃†,pnr ⊗Qp V .

Now we have to deal with the action of φ. For any t > 0, let B†,t
L,∞ := ∪n⩾n(L)φ

−n(B†,pnt
L ).

Note that B†,pn+1r
L,∞ ⊗B†,pnr D†,pn+1r

L and B†,pn+1r
L,∞ ⊗φ(B†,pnr) φ(D†,pn+1r

L ) are both finite free
B†,pn+1r

L,∞ -submodules of (B̃†,pn+1r ⊗Qp V )HL of dimension d and stable under GK . Thus, by
Theorem 6.3, there exists a finite free B†,pn+1r

L,∞ -submodule D†,pn+1r
L,∞ of (B̃†,pn+1r ⊗Qp V )HL ,

such that the above two modules are contained in D†,pn+1r
L,∞ . In particular, the matrix of φ

under a basis of D†,pnr
L belongs to φ−m(B†,pm+n+1r

L ) for m ∈ Z>0 large enough.
We finish the proof by putting s(V ) := pm+n+1r.

Proposition 6.7 (cf. [Wan20, Theorem 2.20(1)]). For any V ∈ RepQp
(GK) of dimension

d, let D†
L be the finite free (φ, Gal(L∞/K))-module of dimension d over B†

L in the above
lemma. Then BL ⊗B†

L
D†

L
∼= (B ⊗Qp V )HL =: DL(V ) in Modét

BL
(φ, ΓL).

Moreover, D†(V ) is an étale (φ, ΓK)-module over B†
K of dimension d and BK ⊗B†

K

D†(V ) ∼= D(V ) via the map λ⊗ x 7→ λx, which is natural.

Proof. Let D†
L be the Moreover, B̃†⊗B†

L
D†

L
∼= B̃†⊗Qp V via the map λ⊗x 7→ λx. We want

to compare both sides over rings without tilde.
Let DL := BL⊗B†

L
D†

L. Then B̃⊗BL
DL
∼= B̃⊗Qp V . Let L be a lattice in V . Since B̃ =

Ã[1/p] and BL is a subfield of B̃, DL∩Ã⊗ZpL is an AL-lattice in DL. Thus, DL is étale by a
similar argument in Proposition 4.18. By Theorem 4.20, there is a W ∈ RepQp

(GK) such that
B̃ ⊗Qp W ∼= B̃ ⊗BL

DL
∼= B̃ ⊗Qp V as (φ, GK)-modules over B̃. Since B̃φ=1 = Qp, W ∼= V

in RepQp
(GK) by taking the φ-fixed points. Thus, DL

∼= (B ⊗Qp V )HL in Modét
BL

(φ, ΓL).
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Note that D†
L admits compatible monomorphisms to both B̃† ⊗Qp V and B ⊗Qp V .

Therefore, there is a monomorphism D†
L ↪→ (B† ⊗Qp V )HL in Modét

B†
L
(φ, ΓL). Note that

dim((B†⊗Qp V )HL) ⩽ dim(V ) = dim(DL) = dim(D†
L). We have that D†

L
∼= (B†⊗Qp V )HL .

Similarly, we have BL ⊗B†
L

D†
L
∼= DL(V ) in Modét

BL
(φ, ΓL).

Finally, we use the Galois descent to reduce to the field K. Note that B†
K = (B†

L)HK/HL .
By Proposition 3.3, H1

cts(HK/HL, GLd(B†
L)) ∼= 0. Therefore, D†(V ) ∼=

(
(B†⊗QpV )HL

)HK/HL

is of dimension d, and D†(V ) is étale since DL is étale. Thus, B†
L⊗B†

K
D†(V ) ∼= D†

L. Hence,

B ⊗B†
K

D†(V ) ∼= B ⊗B†
L

D†
L
∼= B ⊗BL

DL(V ) ∼= B ⊗Qp V.

By taking HK-fixed points on both sides, we get BK ⊗B†
K

D†(V ) ∼= D(V ) in Modét
BK

(φ, ΓL).
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