p-adic Galois representations and $(\phi,\Gamma)\text{-modules}$

Hongxiang Zhao

April 14, 2024

Abstract

In this note we present a basic theory of p-adic Galois representations and $(\phi,\Gamma)\text{-}$ modules. In particular, we prove a series of equivalences between both (1-)categories over various rings following Fontaine and Cherbonnier-Colmez.

Contents

1	Notations			
2	Perfectoid rings and tiltings			
	2.1	Huber rings	3	
	2.2	Perfectoid rings	5	
	2.3	Tilting and the equivalence of étale sites	7	
3	Travel through a series of rings			
	3.1	Rings of characteristic p	8	
	3.2	Rings of characteristic 0	9	
4	(ϕ,Γ) -modules			
	4.1	Definition of (ϕ, Γ) -modules	12	
	4.2	$(\phi,\Gamma)\text{-modules}$ and $p\text{-adic}$ Galois representations	13	
5	Robba rings			
	5.1	Overconvergent elements	16	
	5.2	Robba rings	18	

6	Cherbonnier–Colmez's theorem			
	6.1	The Colmez–Sen–Tate conditions	18	
	6.2	Cherbonnier–Colmez's theorem	20	
References				

1 Notations

Suppose K is a field.

Let G_K denote the absolute Galois group of K.

Let $\chi \colon G_{\mathbb{Q}_p} \to \mathbb{Z}_p^{\times}$ be the cyclotomic character.

If K is a finite extension of \mathbb{Q}_p , then let K_∞ be the infinite cyclotomic extension over K. Let K_0 be the maximal unramified extension of \mathbb{Q}_p in K_∞ and k_{K_∞} be the residue field of K_∞ . Let $H_K := \ker(\chi|_{G_K}) \cong G_{K_\infty}$ and $\Gamma_K := G_K/H_K \cong \operatorname{Gal}(K_\infty/K)$ by local class field theory.

For a commutative ring R, let $\mathbb{W}_P(R)$ denote the ring of p-typical Witt vectors over R.

Let R be a topological ring and G be a topological group acting continuously on R. Let $\operatorname{Rep}_R(G)$ denote the abelian category of continuous (finite free) R-representations of G.

2 Perfectoid rings and tiltings

The idea of the perfectoid rings is to show a correspondence between local fields of mixed characteristic and equal characteristic. In this section, we give a brief introduction to the basic settings in perfectoid rings, basically following [SW20].

The content of this section will not be heavily used in the following sections. We include them here because it provides a modern approach to Corollary 2.20 and for future study in p-adic geometry beyond this note.

2.1 Huber rings

Definition 2.1 (Huber ring). A topological ring A is **Huber** if A admits an open subring $A_0 \subset A$ and a finitely generated ideal $I \subset A_0$ such that $\{I^n : n \ge 0\}$ forms a basis of neighborhoods of 0.

Any such A_0 is called *a ring of definition of* A.

Example 2.2. 1. $(\mathbb{Q}_p, \mathbb{Z}_p)$ and $(\mathbb{Q}_p, \mathbb{Q}_p)$ are both Huber.

2. If k is a perfect field of characteristic p, then $(\mathbb{W}_P(k)[x_1, \cdots, x_n], \mathbb{W}_P(k)[x_1, \cdots, x_n])$ is Huber with respect to the (p, x_1, \cdots, x_n) -adic topology. This ring classifies deformations of formal group laws and shows up further in chromatic homotopy theory. There is a simple characterization of a ring of definition via boundedness.

Definition 2.3 (Bounded subset). A subset S of a topological ring A is **bounded** if for all open neighborhoods U of 0, there exists an open neighborhood V of 0 such that $VS \subset U$.

Lemma 2.4 (cf. [SW20, Lemma 2.2.4]). A subring A_0 of a Huber ring A is a ring of definition if and only if A_0 is open and bounded.

The universal ring of definition is given by the so-called power-bounded elements.

Definition 2.5 (Power-bounded elements). Let A be a Huber ring. An element $x \in A$ is **power-bounded** if the subset $\{x^n : n \ge 0\}$ is bounded. Let $A^\circ \subset A$ be the subring of power-bounded elements.

Proposition 2.6. 1. Any ring of definition $A_0 \subset A$ is contained in A° .

- 2. The ring A° is the filtered union of the rings of definition $A_0 \subset A$.
- *Proof.* 1. Suppose $x \in A_0$, so $x^n \in A_0$ for any $n \ge 0$. Since A_0 is bounded by the above lemma, $x \in A^\circ$.
 - 2. We first show that the poset of rings of definition is filtered. Suppose $A_0, A'_0 \subset A$ are rings of definition. Let $A''_0 \subset A$ be the subring generated by A_0, A'_0 . For any $U \subset A$ open neighborhood of 0, we want to find an open neighborhood $V \subset A$ of 0 such that $VA''_0 \subset U$. We may assume that U is closed under addition (in fact, we can take $U = I^n$, where I is the ideal in the definition of A and A_0). Then there is an open neighborhood $U_1 \subset A$ of 0 such that $U_1A_0 \subset U$ and there is an open neighborhood $V \subset A$ of 0 such that $VA'_0 \subset U_1$. Any element in A''_0 can be written as a linear combination $\sum_i x_i y_i$ where $x_i \in A_0$ and $y_i \in A'_0$. Thus, we have

$$(\sum_i x_i y_i) V \subset \sum_i (x_i y_i V) \subset \sum_i x_i U_1 \subset \sum_i U \subset U$$

Therefore, A_0'' is bounded and further a ring of definition by the above lemma.

Now pick an element $x \in A^{\circ}$. Suppose A_0 is a ring of definition. Then $A_0[x]$ is still a ring of definition since it is still bounded.

Definition 2.7 (Uniform Huber ring). A Huber ring A is **uniform** if A° is bounded, or equivalently, A° is a ring of definition.

Definition 2.8 (Huber pair and ring of integral elements). A *Huber pair* is a pair (A, A^+) , where A is a Huber ring and $A^+ \subset A$ is an open and integrally closed subring of A.

Such A^+ is called *a ring of integral elements*.

Let $A^{\circ\circ} \subset A$ be the subset of topologically nilpotent elements. For any $x \in A^{\circ\circ}$, $x^n \in A^+$ for n large enough since A^+ is open. Therefore, x must lie in A^+ since A^+ is integrally closed, so we have $A^{\circ\circ} \subset A^+$ for any ring of integral elements A^+ .

To sum up, we have the following inclusions between subrings in a Huber ring A.

where the union is filtered and is taken over all rings of definition A_0 in A.

2.2 Perfectoid rings

Definition 2.9 (Tate ring and pseudo-uniformizer). A Huber ring A is **Tate** if it contains a topologically nilpotent unit. A **pseudo-uniformizer** in A is a topologically nilpotent unit.

Definition 2.10 (Perfectoid ring and perfectoid field). A complete Tate ring R is *perfectoid* if R is uniform and there exists a pseudo-uniformizer ϖ of R lives in R° such that p divides ϖ^{p} in R° , and the p-th power Frobenius map

$$\phi\colon R^{\circ}/\varpi \to R^{\circ}/\varpi^p$$

is an isomorphism.

A *perfectoid field* is a perfectoid ring R which is a non-archimedean field.

Proposition 2.11. Suppose R is a complete Tate ring that admits a pseudo-uniformizer ϖ of R lives in R° such that p divides ϖ^{p} in R° . Then the p-th power Frobenius map $\phi: R^{\circ}/\varpi \to R^{\circ}/\varpi^{p}$ is an isomorphism if and only if the Frobenius map $R^{\circ}/p \to R^{\circ}/p$ is surjective.

In particular, the above definition does not depend on the choice of ϖ .

Proof. If $x \in R^{\circ}$ and $x^{p} = \varpi^{p}y$ for some $y \in R^{\circ}$, then $(x/\varpi)^{p} \in R^{\circ}$. By the definition of R° , $x/\varpi \in R^{\circ}$. Therefore, ϕ is always injective.

We have a commutative diagram.

Thus, the surjectivity of the Frobenius on R°/p implies the surjectivity of ϕ .

Conversely, if ϕ is surjective, then for any $x \in R^{\circ}$, we can approximate x successively via ϕ since ϖ is topologically nilpotent and R is complete, i.e., $x = x_0^p + x_1^p \varpi^p + x_2^p \varpi^{2p} + \cdots$ for some $x_0, x_1, \dots \in R^{\circ}$. Thus, $x - (x_0 + x_1 \varpi + x_2 \varpi^2 + \cdots) \in pR^{\circ}$.

Proposition 2.12 (cf. [SW20, Proposition 6.1.6]). Let R be a complete Tate ring of characteristic p. Then R is perfected if and only if R is perfect.

Proposition 2.13 (cf. [SW20, Proposition 6.1.9]). Let K be a non-archimedean field. Then K is a perfectoid field if and only if the following conditions hold.

- 1. K is not discretely valued.
- 2. |p| < 1.
- 3. $\phi: \mathcal{O}_K/p \to \mathcal{O}_K/p$ is surjective.

We give the following examples of perfectoid rings without proof. Some of them can be found in [SW20, Example 6.1.5].

Example 2.14. 1. If A is perfectoid, A° is also perfectoid.

- 2. By the above criterion, \mathbb{Q}_p is not perfectoid, nor any finite extension of \mathbb{Q}_p .
- 3. The *p*-adic completion \mathbb{C}_p of $\overline{\mathbb{Q}_p}$ is perfectoid.
- 4. The *p*-adic completion $\mathbb{Q}_p^{\text{cycl}}$ of $\mathbb{Q}_p(\mu_{p^{\infty}})$ is perfectoid.
- 5. The integer rings of \mathbb{C}_p and $\mathbb{Q}_p^{\text{cycl}}$ are also perfectoid.
- 6. Suppose K is a finite extension of \mathbb{Q}_p . Fix a uniformizer π of K and a Lubin-Tate formal group law $F \in \mathcal{O}_K[\![X,Y]\!]$. Then the p-adic completion of K_{π} associated to F in explicit local class field theory by Lubin and Tate is a perfectoid field.
- 7. The *T*-adic completion $\mathbb{F}_p((T^{1/p^{\infty}}))$ of $\mathbb{F}_p((T))(T^{1/p^{\infty}})$ is perfectoid.

2.3 Tilting and the equivalence of étale sites

Definition 2.15 (Tilt). Let R be a perfectoid ring. The *tilt* of R is

$$R^{\flat} := \lim_{x \mapsto x^p} R$$

with the limit topology. A priori this is only a topological multiplicative monoid. In particular, we have a continuous and multiplicative map $(-)^{\sharp} \colon R^{\flat} \to R$ projecting to the first coordinate. Furthermore, we can promote R^{\flat} to a topological ring where the addition is given by

$$(x_0, x_1, \cdots) + (y_0, y_1, \cdots) := (z_0, z_1, \cdots)$$

where

$$z_i := \lim_{n \to +\infty} (x_{i+n} + y_{i+n})^{p^n}.$$

Note that $(-)^{\sharp}$ is not additive.

Lemma 2.16 (cf. [SW20, Lemma 6.2.2]). 1. The above addition promotes R^{\flat} to a topological perfect F_p -algebra.

2.

$$R^{\flat^{\circ}} \cong R^{\circ\flat} := \lim_{x \mapsto x^p} R^{\circ} \cong \lim_{x \mapsto x^p} R^{\circ}/p \cong \lim_{\phi} R^{\circ}/\varpi$$

where $\varpi \in R^{\circ}$ is a pseudo-uniformizer which divides p in R° .

3. There exists a pseudo-uniformizer ϖ of R lives in R° such that p divides ϖ^{p} in R° , and admits a sequence of p-th power roots $\varpi^{1/p^{n}}$ in R° , and the sequence $\varpi^{\flat} :=$ $(\varpi, \varpi^{1/p}, \cdots) \in R^{\flat^{\circ}}$ is a pseudo-uniformizer of R^{\flat} . Furthermore, $R^{\flat} = R^{\flat^{\circ}}[1/\varpi^{\flat}]$.

Remark 2.17. Suppose K is a perfectoid field. Then the composition $K^{\flat} \xrightarrow{(-)^{\sharp}} K \xrightarrow{|\cdot|} \mathbb{R}_{\geq 0}$ promotes K^{\flat} to a complete non-archimedean field of characteristic p.

Example 2.18 (cf. [SW20, Example 6.2.4]). Let $\zeta_p, \zeta_{p^2}, \cdots$ be a compatible system of pth power roots of unity in $\mathbb{Q}_p^{\text{cycl}}$, $\epsilon := (1, \zeta_p, \zeta_{p^2}, \cdots) \in (\mathbb{Q}_p^{\text{cycl}})^{\flat}$. Then $\bar{\pi} := \epsilon - 1$ is a pseudo-uniformizer of $(\mathbb{Q}_p^{\text{cycl}})^{\flat}$. In fact, $(\mathbb{Q}_p^{\text{cycl}})^{\flat} \cong \mathbb{F}_p((T^{1/p^{\infty}}))$ sending $\bar{\pi}$ to T.

Theorem 2.19 (The equivalence of étale sites, cf. [SW20, Theorem 7.3.1 and Theorem 7.3.2]). Let K be a perfectoid field. Then there is an equivalence between the sites of finite étale algebras over K and over K^{\flat} .

Corollary 2.20. We have that $G_{(\mathbb{Q}_p^{\text{cycl}})^{\flat}} \cong G_{\mathbb{Q}_p^{\text{cycl}}} \cong H_{\mathbb{Q}_p}$.

Thus, instead of working over $\mathbb{Q}_p^{\text{cycl}}$, we can move to its tilt, which is of characteristic p.

3 Travel through a series of rings

Now we will define a series of rings in *p*-adic Galois representations. The goal is to transfer from the original base rings of *p*-adic Galois representations, such as $\mathbb{F}_p, \mathbb{Z}_p$ and \mathbb{Q}_p , to rings that carry more structures while preserve the Galois groups.

Various but similar notations of rings are very confusing for a first read. It is always a good idea to keep in mind a picture of ring extensions. The rules of naming the rings are the following.

The letter A stands for a topological ring with a non-archimedean valuation, B stands for inverting p in A (most time B stands for a field and A will stand for the integer ring of B), and E stands for the reduction of A modulo p. The rings with tilde will always be larger than the one without tilde.

3.1 Rings of characteristic p

We will start with the series of rings named by E, which will deal with the p-adic Galois representations over \mathbb{F}_p .

Let $\tilde{E} := \mathbb{C}_p^{\flat}$, $\tilde{E}_{\mathbb{Q}_p} := (\mathbb{Q}_p^{\text{cycl}})^{\flat}$ and $E_{\mathbb{Q}_p} := \mathbb{F}_p((T))$. Let $\epsilon := (1, \zeta_p, \zeta_{p^2} \cdots)$ for a chosen compatible system of *p*-th power roots of unity and $\bar{\pi} := \epsilon - 1$ as in Example 2.18. Define the non-archimedean valuation val_E on \tilde{E} via Remark 2.17. Then

$$\operatorname{val}_{\tilde{E}}(\bar{\pi}) = \operatorname{val}_p(\lim_{n \to +\infty} (\zeta_{p^n} - 1)^{p^n}) = \lim_{n \to +\infty} p^n \operatorname{val}_p(\zeta_{p^n} - 1) = \frac{p}{p-1} > 0.$$

Thus, there is an inclusion $E_{\mathbb{Q}_p} \hookrightarrow \tilde{E}_{\mathbb{Q}_p}$ given by $T \mapsto \bar{\pi}$. Let $E := \mathbb{F}_p((T))^{\text{sep}}$ in \tilde{E} . In other words, we have the following diagram of field extensions.

All of these rings are characteristic p. Thus, they carry an action by the Frobenius map ϕ . Note that \tilde{E} and $\tilde{E}_{\mathbb{Q}_p}$ are perfect while E and $E_{\mathbb{Q}_p}$ are not. Furthermore, $\tilde{E} := \mathbb{C}_p^{\flat}$ carries an action by $G_{\mathbb{Q}_p}$ component-wise.

Theorem 3.1 (cf. [Ber10, Theorem 15.4]). The canonical map $H_{\mathbb{Q}_p} \cong G_{\tilde{E}_{\mathbb{Q}_p}} \to \operatorname{Gal}(E/E_{\mathbb{Q}_p})$ is an isomorphism.

Recall that the first isomorphism here is given by Corollary 2.20.

If K is a finite extension of \mathbb{Q}_p , let $E_K := E^{H_K}$, which is a finite extension of $E_{\mathbb{Q}_p}$ by the above theorem and Galois correspondence.

Lemma 3.2. If $\bar{\pi}_K$ is a uniformizer of E_K , then $T \mapsto \bar{\pi}_K$ defines an isomorphism $k_{K_{\infty}}((T)) \cong E_K$.

Proof. Since E_K is a finite extension of $E_{\mathbb{Q}_p} := \mathbb{F}_p((T))$ and the residue field of E_K is $k_{K_{\infty}}$, we conclude by the structure theorem for local fields of equal characteristic.

We have the following generalization of Hilbert's Theorem 90 and its corollary.

Proposition 3.3 (cf. [Ber10, Corollary 7.3]). Let L/K be a Galois extension with G := Gal(L/K). If we equip L with the discrete topology, then $H^1_{\text{cts}}(G, L) = 0$ and $H^1_{\text{cts}}(G, \text{GL}_n(L)) = 0$ for all $n \ge 1$.

Theorem 3.4. If K is a finite extension of \mathbb{Q}_p , then $H^1_{\text{cts}}(H_K, E) = 0$ and $H^1_{\text{cts}}(H_K, \text{GL}_n(E)) = 0$ for all $n \ge 1$. Here E is equipped with the discrete topology.

3.2 Rings of characteristic 0

Next, we will introduce the series of rings named by A and B, which will deal with p-adic Galois representations over \mathbb{Z}_p and \mathbb{Q}_p respectively.

A canonical way to transfer from characteristic p to characteristic 0 is via the p-typical ring of Witt vectors. However, since E is not perfect, $\mathbb{W}_P(E)$ is not well-behaved (say, $\mathbb{W}_P(E)$ is not p-adically complete and elements in $\mathbb{W}_P(E)$ do not have a series representation). Thus, we need more works to lift the rings E and $E_{\mathbb{Q}_p}$ to characteristic 0.

Firstly, we want to introduce the weak topology on the ring of *p*-typical Witt vectors. Suppose R is a perfect ring of characteristic 0 complete with respect to a valuation val. Then for each k > 0, define $w_k \colon W_P(R) \to \mathbb{R} \cup \{+\infty\}$ by $w_k(x) := \inf_{i \leq k} \operatorname{val}(x_i)$ for $x = \sum_{i>0} p^i [x_i]_P$ in $\mathbb{W}_P(R)$, where $[-]_P$ is the Teichmüller representative. Then $w_k(x) = +\infty$ if and only if $x \in p^{k+1} \mathbb{W}_P(R)$ and $w_k(x+y) \ge \inf(w_k(x), w_k(y))$ for all $x, y \in \mathbb{W}_P(R)$.

Definition 3.5 (Weak topology on the ring of *p*-typical Witt vectors). The *weak topology* on $W_P(R)$ is the topology defined by w_k for all k.

Proposition 3.6 (cf. [Ber10, Proposition 16.4]). The ring $\mathbb{W}_P(R)$ is complete with respect to the weak topology.

Let $\tilde{A} := \mathbb{W}_P(\tilde{E}) := \mathbb{W}_P(\mathbb{C}_p^{\flat})$ and $\tilde{B} := \tilde{A}[1/p] := \mathbb{W}_P(\mathbb{C}_p^{\flat})[1/p]$. Note that \tilde{A} is equipped with both *p*-adic topology and the weak topology discussed above. Furthermore, \tilde{A} is complete with respect to both topologies. We equip $\tilde{B} = \bigcup_{k>0} p^{-k} \tilde{A}$ with the colimit topologies of the *p*-adic topology and the weak topology on \tilde{A} respectively. As a ring of Witt vectors, \tilde{A} is equipped with a Frobenius map ϕ . Also, there is a lift of the $G_{\mathbb{Q}_p}$ -action on \tilde{E} to \tilde{A} .

In order to lift the rings E and E_K to characteristic 0, where K is a finite extension of \mathbb{Q}_p , let $A_K := (\mathbb{W}_P(k_{K_\infty})((T)))_p^{\wedge}$ and $B_K := A_K[1/p]$. Similar to the inclusions $E_{\mathbb{Q}_p} \hookrightarrow \tilde{E}_{\mathbb{Q}_p} \hookrightarrow \tilde{E}$, we have an inclusion $A_K \hookrightarrow \tilde{A}$ given by $T \mapsto [\bar{\pi}_K]_P$, where $\bar{\pi}_K$ is a uniformizer of $E_K \cong k_{K_\infty}((T)) \hookrightarrow \tilde{E}$. Note that $w_k([\bar{\pi}_K]) = \operatorname{val}_E(\bar{\pi}_K) > 0$, so this map is well-defined. This map also extends to an inclusion $B_K \hookrightarrow \tilde{B}$.

Let $A := (\operatorname{colim}_K A_K)_p^{\wedge}$ and B := A[1/p], where K runs through all finite extensions of \mathbb{Q}_p . Then $A/pA \cong \operatorname{colim}_K E_K = E$. By construction, A_K inherits a $G_{\mathbb{Q}_p}$ -action from \tilde{A} and is fixed by H_K .

Lemma 3.7 (cf. [BC09, Lemma 13.5.7]). For each finite extension K of \mathbb{Q}_p , $A^{H_K} = A_K$.

Since we mapped T to $[\bar{\pi}_K]_P$ in the construction of A_K , A_K is ϕ -stable in A. Thus, A and B are ϕ -stable in \tilde{A} .

The following proposition is a corollary of Proposition 3.3.

Proposition 3.8 (cf. [Ber10, Proposition 7.4]). Let ϖ be a topologically nilpotent element of a ring R which is complete for the ϖ -adic topology and in which ϖ is not a zero divisor. Let G be a group which acts on R continuously and fixes ϖ .

If $H^1_{\text{cts}}(G, \operatorname{GL}_n(R/\varpi R)) = H^1_{\text{cts}}(G, R/\varpi R) = 0$ and the map $\operatorname{GL}_n(R) \to \operatorname{GL}_n(R/\varpi R)$ is surjective, then $H^1_{\text{cts}}(G, \operatorname{GL}_n(R)) = H^1_{\text{cts}}(G, R) = 0.$ **Theorem 3.9.** If K is a finite extension of \mathbb{Q}_p , then $H^1_{\text{cts}}(H_K, A) = 0$ and $H^1_{\text{cts}}(H_K, \text{GL}_n(A)) = 0$ for all $n \ge 1$. Here A is equipped with the p-adic topology.

Proof. Note that p is a topologically nilpotent element of A, A is p-complete and p is not a zero-divisor in A. Every lift of $GL_n(E)$ to $Mat_n(A)$ has determinant not in pA. Since $A/pA \cong E$ is a field, every lift is invertible. Therefore, we conclude by the above proposition and Theorem 3.4.

Note that B/B_K is not algebraic, so we cannot prove $H^1_{\text{cts}}(H_K, B) = H^1_{\text{cts}}(H_K, \text{GL}_d(B)) = 0$ via Proposition 3.3. Besides, we cannot use the above proposition since B is a field.

To sum up, we have the following diagram of extensions of rings.

where the rings without tilde named by E, A and B are Laurent series, p-adic completion of Laurent series and p-adic completion of Laurent series inverting p over various coefficients respectively.

4 (ϕ, Γ) -modules

In this section, we prove a series of equivalences between the (1-)categories of Galois representations and (ϕ, Γ) -modules, which reduces Galois representations to some explicit objects that we can compute with.

Let R substitute for one of the letters E, A and B in this paragraph. Conceptually, for a finite extension K of \mathbb{Q}_p , the construction of R_K has and only has contained all the ramification information (by which we mean K_∞), so that H_K acts freely on R and $R^{H_K} = R_K$. Therefore, we can reduce Galois representations over R to the totally ramified part by taking the H_K -fixed points, which is controlled by Γ_K . On the other hand, the information of unramified part is determined by the action of Frobenius map ϕ .

4.1 Definition of (ϕ, Γ) -modules

In this subsection, suppose R is a commutative ring with an endomorphism σ .

Definition 4.1 (ϕ -module). A ϕ -module over R is a R-module M together with a σ semilinear endomorphism $\phi: M \to M$, i.e., ϕ is additive and $\phi(rm) = \sigma(r)\phi(m)$ for all $r \in R$ and $m \in M$.

Equivalently, a ϕ -module over R is a R-module M with a R-linear morphism $\Phi \colon M \to \sigma^* M$.

For simplicity, we will only denote a ϕ -module (M, Φ) by the underlying module M.

Definition 4.2 (Étale ϕ -module). An *étale* ϕ -module over R is a ϕ -module M such that Φ is an isomorphism.

The following is an easy lemma. We omit the proof.

Lemma 4.3. If *D* is a finite free ϕ -module of dimension *n* over *R*, then *D* is étale if and only if $Mat(\phi) \in GL_n(R)$.

Suppose Γ is a group and R is equipped with an action of Γ , which commutes with σ .

Definition 4.4 ((ϕ, Γ) -module). A (ϕ, Γ) -module over R is a ϕ -module with a semilinear Γ -action commuting with ϕ .

Similarly, we will only denote a (ϕ, Γ) -module by its underlying module.

Suppose now that R and Γ are both equipped with Hausdorff and complete topology. In addition, suppose that R is a Noetherian flat R-algebra via the structure continuous map σ .

Definition 4.5 (Étale (ϕ, Γ) -module). An *étale* (ϕ, Γ) -module over R is a (ϕ, Γ) -module over R such that ϕ and the Γ -action is continuous, and it is étale as a ϕ -module.

Let $\operatorname{Mod}_{R}^{\operatorname{\acute{e}t}}(\phi, \Gamma)$ denote the abelian category of (ϕ, Γ) -modules over R (cf. [FO22, Proposition 3.19]).

Remark 4.6. When we discuss étale (ϕ, Γ) -modules over E_K , we consider the topology given by val_E .

When we discuss étale (ϕ, Γ) -modules over A_K and B_K , we consider the weak topology on them.

Notation. For simplicity (and as done in many references, such as [Ber10]), we will assume that all ϕ -modules and (ϕ , Γ)-modules are finite free.

4.2 (ϕ, Γ) -modules and *p*-adic Galois representations

Suppose G is a topological group, R is a topological commutative ring with a continuous G-action and M is a finite free R-module of dimension n with a continuous semilinear G-action. Pick a basis e for D. Then the map $G \to \operatorname{GL}_n(R)$ given by $g \mapsto \operatorname{Mat}_e(g)$ is an 1-cocycle in $C^1_{\operatorname{cts}}(G, \operatorname{GL}_n(R))$. If we choose another basis for D, the 1-cocycle will differ by an 1-coboundary. Furthermore, it gives us a (non-canonical) bijection of sets

{semilinear representations of G of dimension n}/isomorphisms $\cong H^1(G, \operatorname{GL}_n(R))$.

By the above discussion and Theorem 3.9 and Theorem 3.4, we get the following.

Corollary 4.7. Suppose K is a finite extension of \mathbb{Q}_p . Every semilinear representation of H_K of dimension n over A and E is (non-canonically) isomorphic to A^n and E^n respectively.

In the rest of this section, suppose K is a finite extension of \mathbb{Q}_p .

Proposition 4.8. Suppose V is a \mathbb{F}_p -representation of G_K of dimension n and $D(V) := (E \otimes_{\mathbb{F}_p} V)^{H_K}$. Then D(V) is an étale (ϕ, Γ_K) -module over E_K of dimension n, $E \otimes_{E_K} D(V) \cong E \otimes_{\mathbb{F}_p} V$ in the category of (ϕ, G_K) -modules via the map $\lambda \otimes x \mapsto \lambda x$. In particular, $V \cong (E \otimes_{E_K} D(V))^{\phi=1}$ via the above isomorphism.

Proof. By Corollary 4.7, $E \otimes_{\mathbb{F}_p} V \simeq E^n$ in the category of representations of H_K over E. Therefore, $D(V) \cong E_K^n$ in the category of E_K -modules. Since ϕ commutes with the H_K action on E, D(V) promotes to a ϕ -module over E_K . Since the remaining Γ_K -action on D(V) acts trivially on E, it commutes with ϕ . Thus, D(V) promotes to a (ϕ, Γ_K) -module over E_K .

Now we show that D(V) is étale. Suppose $e = (e_i)$ is a \mathbb{F}_p -basis for V, $f = (f_i)$ is an E_K -basis for D(V) and f = eA for some $A \in \operatorname{GL}_n(E)$. Suppose $\phi(f) = fB$ for some $B \in \operatorname{Mat}_n(E_K)$. Then $e\phi(A) = \phi(f) = fB = eAB$. Thus, $B = A^{-1}\phi(A) \in \operatorname{GL}_n(E_K)$, which implies that D(V) is étale.

Since $\dim(D(V)) = \dim(V)$, there is an *E*-basis of $E \otimes_{\mathbb{F}_p} V$ lives in D(V). Thus, $E \otimes_{E_K} D(V) \cong E \otimes_{\mathbb{F}_p} V$ via the map $\lambda \otimes x \mapsto \lambda x$. This morphism commutes with ϕ and the G_K -action. Thus, this isomorphism promotes to an isomorphism in the category of (ϕ, Γ_K) -modules.

Since
$$\mathbb{F}_p = E^{\phi=1}$$
, $V \cong (E \otimes_{E_K} D(V))^{\phi=1}$.

Actually, the functor D is an equivalence. To prove this, we need the following theorem.

Theorem 4.9 (cf. [Ber10, Theorem 8.6]). If k is a separably closed field of characteristic p, and V is an étale ϕ -module over k, then V admits a basis fixed by ϕ and $1 - \phi \colon V \to V$ is surjective.

Proposition 4.10. Suppose D is an étale (ϕ, Γ_K) -module over E_K of dimension n. Then $(E \otimes_{E_K} D)^{\phi=1}$ is a \mathbb{F}_p -representation of G_K of dimension n and $E \otimes_{\mathbb{F}_p} (E \otimes_{E_K} D)^{\phi=1} \cong$ $E \otimes_{E_K} D$ in the category of (ϕ, G_K) -modules via the map $\lambda \otimes x \mapsto \lambda x$. In particular, $D \cong (E \otimes_{\mathbb{F}_p} (E \otimes_{E_K} D)^{\phi=1})^{H_K}$ via the above isomorphism.

Proof. Since $E \cong \mathbb{F}_p((T))^{\text{sep}}$ is separably closed of characteristic p, $E \otimes_{E_K} D$ admits a basis fixed by ϕ by Theorem 4.9. Therefore, $(E \otimes_{E_K} D)^{\phi=1}$ has dimension n.

The remaining proof is similar to the one of Proposition 4.8. \Box

Therefore, we have established the following equivalence of categories.

Theorem 4.11. There is an equivalence of abelian categories $\operatorname{Rep}_{\mathbb{F}_p}(G_K) \cong \operatorname{Mod}_{E_K}^{\text{ét}}(\phi, \Gamma_K)$ given by $V \mapsto (E \otimes_{\mathbb{F}_p} V)^{H_K}$ and $D \mapsto (E \otimes_{E_K} D)^{\phi=1}$ for $V \in \operatorname{Rep}_{\mathbb{F}_p}(G_K)$ and $D \in \operatorname{Mod}_{E_K}^{\text{ét}}(\phi, \Gamma_K)$.

By Theorem 3.9, one can prove the following proposition mimicking the proof of Proposition 4.8.

Proposition 4.12. Suppose V is a \mathbb{Z}_p -representation of G_K of dimension n and $D(V) := (A \otimes_{\mathbb{Z}_p} V)^{H_K}$. Then D(V) is an étale (ϕ, Γ_K) -module over A_K of dimension n, $A \otimes_{A_K} D(V) \cong A \otimes_{\mathbb{Z}_p} V$ in the category of (ϕ, G_K) -modules via the map $\lambda \otimes x \mapsto \lambda x$. In particular, $V \cong (A \otimes_{A_K} D(V))^{\phi=1}$ via the above isomorphism.

By successive approximation, we have the following corollary of Theorem 4.9.

Corollary 4.13. If R is a commutative ring which is complete with respect to the p-adic topology, R/pR is a separably closed field of characteristic p, R is equipped with a Frobenius endomorphism ϕ lifting the Frobenius on R/pR, and V is an étale ϕ -module over R, then V admits a basis fixed by ϕ and $1 - \phi$: $V \rightarrow V$ is surjective.

Similarly, we have the following proposition for A and \mathbb{Z}_p and the equivalence of categories.

Proposition 4.14. Suppose D is an étale (ϕ, Γ_K) -module over A_K of dimension n. Then $(A \otimes_{A_K} D)^{\phi=1}$ is a \mathbb{Z}_p -representation of G_K of dimension n and $A \otimes_{\mathbb{Z}_p} (A \otimes_{A_K} D)^{\phi=1} \cong A \otimes_{A_K} D$ in the category of (ϕ, G_K) -modules via the map $\lambda \otimes x \mapsto \lambda x$. In particular, $D \cong (A \otimes_{\mathbb{Z}_p} (A \otimes_{A_K} D)^{\phi=1})^{H_K}$ via the above isomorphism.

Theorem 4.15. There is an equivalence of abelian categories $\operatorname{Rep}_{\mathbb{Z}_p}(G_K) \cong \operatorname{Mod}_{A_K}^{\text{ét}}(\phi, \Gamma_K)$ given by $V \mapsto (A \otimes_{\mathbb{Z}_p} V)^{H_K}$ and $D \mapsto (A \otimes_{A_K} D)^{\phi=1}$ for $V \in \operatorname{Rep}_{\mathbb{Z}_p}(G_K)$ and $D \in \operatorname{Mod}_{A_K}^{\text{ét}}(\phi, \Gamma_K)$.

As said at the end of Section 3.2, there is no analog of Hilbert's theorem 90 for B. Hence, we can only derive the equivalence of categories from the results for A_K . To do this, we need to modify the definition for étale (ϕ, Γ_K) -modules over B_K as follows.

Definition 4.16 (Étale (ϕ, Γ_K) -modules over B_K). An *étale* (ϕ, Γ_K) -module over B_K is a (ϕ, Γ_K) -module D of dimension n over B_K such that there is a basis for D in which $Mat(\phi) \in GL_n(A_K)$.

Lemma 4.17. Every continuous \mathbb{Q}_p -representation V of dimension n of G_K admits a \mathbb{Z}_p lattice stable under G_K .

Proof. Pick a basis for V. The basis spans a \mathbb{Z}_p -lattive \mathcal{L} of V. Since \mathbb{Z}_p is open in \mathbb{Q}_p , $\operatorname{GL}_n(\mathbb{Z}_p) = \operatorname{GL}_n(\mathbb{Q}_p) \cap \operatorname{Mat}_n(\mathbb{Z}_p)$ is an open subgroup of $\operatorname{GL}_n(\mathbb{Q}_p)$. Thus, the subgroup Hof G_K consisting of elements g such that $g\mathcal{L} \subset \mathcal{L}$ is an open subgroup of G_K . Since G_K is compact, H is of finite index. Then $\sum_{g \in G} gT$ is a finite sum and is a stable \mathbb{Z}_p -lattice in V.

Proposition 4.18. Suppose V is a \mathbb{Q}_p -representation of G_K of dimension n and $D(V) := (B \otimes_{\mathbb{Q}_p} V)^{H_K}$. Then D(V) is an étale (ϕ, Γ_K) -module over B_K of dimension n, $B \otimes_{B_K} D(V) \cong B \otimes_{\mathbb{Q}_p} V$ in the category of (ϕ, G_K) -modules via the map $\lambda \otimes x \mapsto \lambda x$. In particular, $V \cong (B \otimes_{B_K} D(V))^{\phi=1}$ via the above isomorphism.

Proof. By the above lemma, pick a stable \mathbb{Z}_p -lattice \mathcal{L} of B. By Theorem 3.9, $A \otimes_{\mathbb{Z}_p} \mathcal{L} \simeq A^n$ as an A-representation of H_K . Thus, $B \otimes_{\mathbb{Q}_p} V \simeq B^n$ as B-representations of H_K . The remaining proof is similar to Proposition 4.8.

It remains to show that D(V) is étale. Note that

$$B_K \otimes_{A_K} D(\mathcal{L}) := B_K \otimes_{A_K} (A \otimes_{\mathbb{Z}_p} \mathcal{L})^{H_K} \cong (B_K \otimes_{A_K} A \otimes_{\mathbb{Z}_p} \mathcal{L})^{H_K} \cong (B \otimes_{\mathbb{Z}_p} \mathcal{L})^{H_K} \cong D(V)$$

in the category of (ϕ, Γ_K) -modules. Therefore, an A_K -basis for $D(\mathcal{L})$ induces a B_K -basis D(V). Thus, D(V) is étale.

Proposition 4.19. Suppose D is an étale (ϕ, Γ_K) -module over B_K of dimension n. Then $(B \otimes_{B_K} D)^{\phi=1}$ is a \mathbb{Q}_p -representation of G_K of dimension n and $B \otimes_{\mathbb{Q}_p} (B \otimes_{B_K} D)^{\phi=1} \cong$ $B \otimes_{B_K} D$ in the category of (ϕ, G_K) -modules via the map $\lambda \otimes x \mapsto \lambda x$. In particular, $D \cong (B \otimes_{\mathbb{Q}_p} (B \otimes_{B_K} D)^{\phi=1})^{H_K}$ via the above isomorphism.

Proof. Since D is étale over B_K , there is a submodule D_0 of D such that $D \cong B_K \otimes_{A_K} D_0$ as ϕ, Γ_K -modules. Then Theorem 4.15 implies that $A \otimes_{A_K} D_0 \cong A \otimes_{\mathbb{Z}_p} (A \otimes_{A_K} D_0)^{\phi=1}$. Thus,

$$B \otimes_{B_K} D \cong B \otimes_{A_K} D_0 \cong B \otimes_{\mathbb{Z}_p} (A \otimes_{A_K} D_0)^{\phi=1} \cong B \otimes_{\mathbb{Q}_p} (\mathbb{Q}_p \otimes_{\mathbb{Z}_p} (A \otimes_{A_K} D_0)^{\phi=1})$$

in the category of (ϕ, Γ_K) -modules. Since $B^{\phi=1} = \mathbb{Q}_p$, $\mathbb{Q}_p \otimes_{\mathbb{Z}_p} (A \otimes_{A_K} D_0)^{\phi=1} \cong (B \otimes_{B_K} D)^{\phi=1}$.

Therefore, we have finally proved the following theorem.

Theorem 4.20. There is an equivalence of abelian categories $\operatorname{Rep}_{\mathbb{Q}_p}(G_K) \cong \operatorname{Mod}_{B_K}^{\text{ét}}(\phi, \Gamma_K)$ given by $V \mapsto (B \otimes_{\mathbb{Q}_p} V)^{H_K}$ and $D \mapsto (B \otimes_{B_K} D)^{\phi=1}$ for $V \in \operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ and $D \in \operatorname{Mod}_{B_K}^{\text{ét}}(\phi, \Gamma_K)$.

5 Robba rings

In this section, we will just rush through the construction of the Robba ring and its properties without any proof. We recommend [Wan20] for detailed proofs.

5.1 Overconvergent elements

Recall that $\tilde{E} := \mathbb{C}_p^{\flat}$, $\tilde{A} := \mathbb{W}_P(\mathbb{C}_p^{\flat})$ and for each k > 0, $w_k : \tilde{A} \to \mathbb{R} \cup \{+\infty\}$ is given by $w_k(x) := \inf_{i \leq k} \operatorname{val}_{\tilde{E}}(x_i)$ for any $x = \sum_{i>0} p^i[x_i] \in \mathbb{W}_P(\mathbb{C}_p^{\flat})$.

For any r > 0, let

$$\tilde{A}^{\dagger,r} := \{ x \in \tilde{A} \colon w_k(x) + k \frac{pr}{p-1} \ge 0 \text{ for all } k > 0 \text{ and } \lim_{k \to +\infty} \left(w_k(x) + k \frac{pr}{p-1} \right) = +\infty \}$$

Note that if $r_2 > r_1 > 0$, then $\tilde{A}^{\dagger,r_2} \supset \tilde{A}^{\dagger,r_1}$.

Lemma 5.1 (cf. [Wan20, Lemma 1.4]). The set $\tilde{A}^{\dagger,r}$ is a subring of \tilde{A} which is stable under $G_{\mathbb{Q}_p}$ and $\phi: \tilde{A}^{\dagger,r} \to \tilde{A}^{\dagger,pr}$ is a bijection.

Let $\nu_r \colon \tilde{A}^{\dagger,r} \to \mathbb{R}_{\geq 0}$ given by $\nu_r(x) := \inf_{k>0}(w_k(x) + k\frac{pr}{p-1})$. The following lemma shows that this is a valuation on $\tilde{A}^{\dagger,r}$. It will make $\tilde{A}^{\dagger,r}$ into a complete valuation ring, whose topology is compatible with the action of $G_{\mathbb{Q}_p}$ and the map ϕ .

Lemma 5.2 (cf. [Wan20, Lemma 1.5]). For any r > 0 and $x, y \in \tilde{A}^{\dagger,r}$,

- ν_r(x) = +∞ if and only if x = 0.
 ν_r(x + y) ≥ inf(ν_r(x), ν_r(y)).
 ν_r(xy) = ν_r(x) + ν_r(y).
- 4. $\nu_{pr}(\phi(x)) = p\nu_r(x)$.
- 5. $\nu_r(px) = \nu_r(x) + \frac{pr}{r-1}$.
- 6. $\nu_r(\sigma(x)) = \nu_r(x)$ for all $\sigma \in G_{\mathbb{Q}_p}$.

Proposition 5.3 (cf. [Wan20, Proposition 1.7]). The ring $\tilde{A}^{\dagger,r}$ is Hausdorff and complete with respect to the topology given by ν_r .

Lemma 5.4. For all r > 0, the action of $G_{\mathbb{Q}_p}$ on $\tilde{A}^{\dagger,r}$ is continuous and $\phi \colon \tilde{A}^{\dagger,r} \to \tilde{A}^{\dagger,pr}$ is a homeomorphism.

As before, let $\tilde{B}^{\dagger,r} := \tilde{A}^{\dagger,r}[1/p]$. We can extend ν_r to $\tilde{B}^{\dagger,r}$ via the 5-th part of Lemma 5.2. Note that Lemma 5.2 also holds for $\tilde{B}^{\dagger,r}$. Furthermore, for each finite extension K of \mathbb{Q}_p , let $\tilde{B}_K^{\dagger,r} := (\tilde{B}^{\dagger,r})^{H_K}$ and $\tilde{A}_K^{\dagger,r} := (\tilde{A}^{\dagger,r})^{H_K}$. Let $\tilde{B}^{\dagger} := \cup_{r>0} \tilde{B}^{\dagger,r}$.

Remark 5.5. The ring $\tilde{A}^{\dagger,r}$ is not the ring of integers in $\tilde{B}^{\dagger,r}$, but is the ring of integers in $\tilde{B}^{\dagger,r} \cap \tilde{A}$.

Similarly, let $B^{\dagger,r} := \tilde{B}^{\dagger,r} \cap B$, $B^{\dagger,r}_K := (B^{\dagger,r})^{H_K}$, $B^{\dagger} := \cup_{r>0} B^{\dagger,r}$ and $B^{\dagger}_K := \cup_{r>0} B^{\dagger,r}_K$.

Proposition 5.6 (cf. [Wan20, Proposition 1.9]). The ring \tilde{B}^{\dagger} is a field. As a consequence, $\tilde{B}_{K}^{\dagger}, B^{\dagger}$ and B_{K}^{\dagger} are fields.

5.2 Robba rings

Lemma 5.7 (cf. [Ber10, Lemma 22.1]). Suppose K is a finite extension of \mathbb{Q}_p . There exists r(K) > 0 and $\pi_K^{\dagger} \in A_K^{\dagger,r(K)}$, such that the image $\overline{\pi}_K$ of π_K^{\dagger} in E_K is a uniformizer and $\pi_K^{\dagger}/[\overline{\pi}_K]_P$ is a unit in $A_K^{\dagger,r(K)}$.

Suppose K is an extension of \mathbb{Q}_p and r > 0. Let \mathcal{A}_K^r be the ring of formal power series $f(T) = \sum_{n \in \mathbb{Z}} a_n T^n$ with coefficients in \mathcal{O}_K , such that $\operatorname{val}_p(a_n) + nr \ge 0$ for all n and $\lim_{n \to -\infty} (\operatorname{val}_p(a_n) + nr) = +\infty$. For any $f \in \mathcal{A}_K^r$, define $\omega_r(f) = \inf_{n \in \mathbb{Z}} (\operatorname{val}_p(a_n) + nr)$. It can be easily shown that ω_r is a valuation on \mathcal{A}_K^r . Therefore, \mathcal{A}_K^r is isomorphic to the ring of analytic functions with coefficients in \mathcal{O}_K convergent on the annulus $\{0 < \operatorname{val}_p(T) \le r\}$ and bounded by 1 with respect to the norm associated to ω_r . Let $\mathcal{B}_K^r := \mathcal{A}_K^r[1/p]$. We can also extend ω_r to \mathcal{B}_K^r . Then \mathcal{B}_K^r is isomorphic to the ring of bounded analytic functions with coefficients in $\{0 < \operatorname{val}_p(T) \le r\}$.

Let $e_K := [K_\infty : (K_0)_\infty]$, which is the ramification index of $K_\infty/(\mathbb{Q}_p)_\infty$.

Theorem 5.8 (cf. [Wan20, Theorem 1.23]). *For all* $r > r_K$,

- 1. there is an isomorphism of topological rings $\mathcal{A}_{K_0}^{\frac{1}{re_K}} \to A_K^{\dagger,r}$ given by $f \mapsto f(\pi_K^{\dagger})$ such that $\frac{pr}{p-1}\omega_{\frac{1}{re_K}}(f) = \nu_r(f(\pi_K^{\dagger}))$, and
- 2. there is an isomorphism of topological rings $\mathcal{B}_{K_0}^{\frac{1}{re_K}} \to B_K^{\dagger,r}$ given by $f \mapsto f(\pi_K^{\dagger})$ such that $\frac{pr}{p-1}\omega_{\frac{1}{re_K}}(f) = \nu_r(f(\pi_K^{\dagger})).$

6 Cherbonnier–Colmez's theorem

Recall that in Section 4.2, we proved the equivalences between p-adic Galois representations and (ϕ, Γ) -modules. In this subsection, we want to push the equivalence further to (ϕ, Γ) modules over overconvergent elements, which is the Cherbonnier–Colmez's theorem. To do this, we need to introduce the technique by Colmez-Sen-Tate to overcome the absence of generalized Hilbert's theorem 90.

6.1 The Colmez–Sen–Tate conditions

Let K be a finite extension of \mathbb{Q}_p , $\tilde{\Omega}$ be a \mathbb{Q}_p -algebra and $\operatorname{val}_{\Omega} \colon \tilde{\Omega} \to \mathbb{R} \cup \{+\infty\}$ be a map such that

- 1. $\operatorname{val}_{\Omega}(x) = +\infty$ if and only if x = 0.
- 2. $\operatorname{val}_{\Omega}(x+y) \ge \inf(\operatorname{val}_{\Omega}(x), \operatorname{val}_{\Omega}(y)).$
- 3. $\operatorname{val}_{\Omega}(xy) \ge \operatorname{val}_{\Omega}(x) + \operatorname{val}_{\Omega}(y)$.
- 4. $\operatorname{val}_{\Omega}(p) > 0$ and $\operatorname{val}_{\Omega}(px) = \operatorname{val}_{\Omega}(p) + \operatorname{val}_{\Omega}(x)$ if $x \in \tilde{\Omega}$.

Assume that $\hat{\Omega}$ is complete with respect to the topology defined by val_{Ω} and $\hat{\Omega}$ is equipped with a G_K -action such that val_{Ω} is G_K -invariant.

We say that $\tilde{\Omega}$ satisfies the Colmez–Sen–Tate conditions if there exists constants $c_1, c_2, c_3 \in \mathbb{R}_{\geq 0}$ such that the following three conditions hold.

- (CST1) For every finite extension M/L of K, there exists $\alpha \in \tilde{\Omega}^{H_M}$ such that $\operatorname{val}_{\Omega}(\alpha) > -c_1$ and $\operatorname{Tr}_{M_{\infty}/L_{\infty}}(\alpha) = 1$.
- (CST2) For every finite extension L of K, there exists $n(L) \in \mathbb{Z}_{>0}$ and an increasing sequence $\{\Omega_{L,n}\}_{n \ge n(L)}$ of closed sub- \mathbb{Q}_p -algebras of $\tilde{\Omega}^{H_L}$ along with maps $R_{L,n} \colon \tilde{\Omega}^{H_L} \to \Omega_{L,n}$ satisfying the following properties.
 - (a) If $x \in \tilde{\Omega}^{H_L}$, then $\operatorname{val}_{\Omega}(R_{L,n}(x)) \ge \operatorname{val}_{\Omega}(x) c_2$ and $R_{L,n}(x) \to x$ as $n \to \infty$.
 - (b) If L_2/L_1 is finite, then $\Omega_{L_1,n} \subset \Omega_{L_2,n}$ and $R_{L_2,n}|_{\tilde{\Omega}^{H_{L_1}}} = R_{L_1,n}$.
 - (c) $R_{L,n}$ is $\Omega_{L,n}$ -linear and is the identity on $\Omega_{L,n}$.
 - (d) If $g \in G_K$, then $g(\Omega_{L,n}) = \Omega_{g(L),n}$ and $g \circ R_{L,n} = R_{g(L),n} \circ g$.

Let $\Omega_{L,\infty} := \bigcup_{n \ge n(L)} \Omega_{L,n}$.

(CST3) For every finite extension L of K, there exists $m(L) \ge n(L)$ such that for all $\gamma \in \Gamma_L$ and $n \ge \sup(\operatorname{val}_p(\chi(\gamma) - 1), m(L)), 1 - \gamma$ is invertible on $X_{L,n} := (1 - R_{L,n})(\tilde{\Omega}^{H_L})$ and $\operatorname{val}_{\Omega}((\gamma - 1)^{-1}x) \ge \operatorname{val}_{\Omega}(x) - c_3$ for all $x \in X_{L,n}$.

Example 6.1 (cf. [Ber10, §10 and §19]). Let $\tilde{\Omega} := \mathbb{C}_p$ with *p*-adic valuation, $\Omega_{L,n} := L_n$ be the finite totally ramified extension over *L* constructed by Lubin-Tate and R_n is the Tate's normalized traces. Then $\tilde{\Omega}$ satisfies the CST conditions.

The point of the CST conditions is that we can reduce $\operatorname{Rep}_{\tilde{\Omega}}(G_K)$ to $\operatorname{Rep}_{\Omega_{L,n}}(\operatorname{Gal}(L_{\infty}/K))$ for some finite extension L of K and $n \ge n(L)$. In particular, the reduction have two steps.

- The condition CST1 helps us to reduce to Rep_{Ω̃^HL} (Gal(L_∞/K)) (cf. [Ber10, Corollary 19.3]). This result is similar to the generalized Hilbert's theorem 90.
- The conditions CST2 and CST3 together approximate Rep_{Ω̃H_L}(Gal(L_∞/K)) through Rep_{Ω_{L,n}}(Gal(L_∞/K)) (cf. [Ber10, Corollary 19.5]).

To be precise, we have the following theorems.

Theorem 6.2 (cf. [Ber10, Theorem 19.1]). If $\tilde{\Omega}$ satisfies the CST conditions, then

 $\operatorname{colim}_{L}\operatorname{colim}_{n \ge n(L)} H^{1}(\operatorname{Gal}(L_{\infty}/K), \operatorname{GL}_{d}(\Omega_{L,n})) \cong H^{1}(G_{K}, \operatorname{GL}_{d}(\tilde{\Omega}))$

where the isomorphism is induced by the inflation maps.

Theorem 6.3 (cf. [Ber10, Theorem 19.6 and Theorem 19.8]). Suppose $W \in \operatorname{Rep}_{\tilde{\Omega}}(G_K)$ of dimension d. There exists a finite extension L of K and a finite free $\Omega_{L,\infty}$ -submodule $W_{L,\infty} \subset W^{H_L}$ of dimension d such that $W_{L,\infty}$ is stable under $\operatorname{Gal}(L_{\infty}/K)$ and $W_{L,\infty} \otimes_{\Omega_{L,\infty}} \tilde{\Omega} \cong W$ in $\operatorname{Rep}_{\tilde{\Omega}}(G_K)$.

Furthermore, $W_{L,\infty}$ is the greatest $\Omega_{L,\infty}$ -sub-representation of $\operatorname{Gal}(L_{\infty}/K)$ of W^{H_L} .

Proposition 6.4 (cf. [Ber10, §24]). Let $K := \mathbb{Q}_p$. There exists $r_K > 0$, such that for all $r > r_K$, $\tilde{\Omega} := \tilde{B}^{\dagger,r}$ with $\operatorname{val}_{\Omega} := \nu_r$ and $\Omega_{L,n} := \phi^{-n}(B_L^{\dagger,p^nr})$ satisfy the CST conditions with some maps $R_{L,n}$ defined in [Ber10, §24].

6.2 Cherbonnier–Colmez's theorem

Theorem 6.5 (Cherbonnier–Colmez). Suppose K is a finite extension of \mathbb{Q}_p . The functor $V \mapsto D^{\dagger}(V) := (B^{\dagger} \otimes_{\mathbb{Q}_p} V)^{H_K}$ induces an equivalence between $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ and $\operatorname{Mod}_{B_K^{\dagger}}^{\mathsf{et}}(\phi, \Gamma_K)$, where a (ϕ, Γ_K) -modules over B_K^{\dagger} is étale if it is after base-changing to B_K .

By definition, $\operatorname{Mod}_{B_K^{\dagger}}^{\operatorname{et}}(\phi, \Gamma_K) \cong \operatorname{Mod}_{B_K}^{\operatorname{et}}(\phi, \Gamma_K)$ by base-changing. Thus, we remain to show that D^{\dagger} is well-defined and D(V) is naturally isomorphic to $B_K \otimes_{B_K^{\dagger}} D^{\dagger}(V)$, where $D(V) := (B \otimes_{\mathbb{Q}_p} V)^{H_K}$ as in Theorem 4.20.

The theorem is deduced from the following lemma and proposition. The idea is that firstly we use the CST-method to reduce to a $\operatorname{Gal}(L_{\infty}/K)$ -submodule $D_L^{\dagger,r}$ of $D^{\dagger}(V)$ depending on the radius of convergence r. Since ϕ induces a homeomorphism $\tilde{B}^{\dagger,r} \to \tilde{B}^{\dagger,pr}$ for all r > 0and the matrix of ϕ has only finite entries, we can raise the radius of convergence large enough to promote $D_L^{\dagger,r}$ to a (ϕ, Γ_K) -module. Finally, we extend the coefficient to get $D^{\dagger}(V)$. **Lemma 6.6.** For any $V \in \operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ of dimension d, there is a finite extension L of Kand $s(V) \in \mathbb{R}_{>0}$ such that for all $s \ge s(V)$, $(\tilde{B}^{\dagger,s} \otimes_{\mathbb{Q}_p} V)^{H_L}$ has a free $B_L^{\dagger,s}$ -submodule $D_L^{\dagger,s}$ of dimension d such that $D_L^{\dagger,s}$ is stable under G_K , $\tilde{B}^{\dagger,s} \otimes_{B_L^{\dagger,s}} D_L^{\dagger,s} \cong \tilde{B}^{\dagger,s} \otimes_{\mathbb{Q}_p} V$ via the map $\lambda \otimes x \mapsto \lambda x$ and $D_L^{\dagger} := B_L^{\dagger} \otimes_{B_r^{\dagger,s}} D_L^{\dagger,s} \hookrightarrow \tilde{B}^{\dagger} \otimes_{\mathbb{Q}_p} V$ is stable under ϕ .

Proof. Fix r > 0 such that $(\tilde{B}^{\dagger,r}, \nu_r, \phi^{-n}(B_L^{\dagger,p^n r}))$ satisfies the CST conditions. By Theorem 6.2, there is a finite extension L of K, $n \in \mathbb{Z}_{>0}$ and a finite free $\phi^{-n}(B_L^{\dagger,p^n r})$ -submodule $D_{L,n}^{\dagger,r}$ of $(\tilde{B}^{\dagger,r} \otimes_{\mathbb{Q}_p} V)^{H_L}$ such that $D_{L,n}^{\dagger,r}$ is of dimension d and stable under G_K and $\tilde{B}^{\dagger,r} \otimes_{\phi^{-n}(B_L^{\dagger,p^n r})} D_{L,n}^{\dagger,r} \cong \tilde{B}^{\dagger,r} \otimes_{\mathbb{Q}_p} V$.

We want the coefficient to be in $B_L^{\dagger,p^n r}$, but not in $\phi^{-n}(B_L^{\dagger,p^n r})$. Let $D_L^{\dagger,p^n r} := \phi^n(D_{L,n}^{\dagger,r})$ in $\tilde{B}^{\dagger} \otimes_{\mathbb{Q}_p} V$. Then $D_L^{\dagger,p^n r}$ is stable under G_K . Since ϕ is injective, $D_L^{\dagger,p^n r}$ is still finite free of dimension d. Moreover, we have $\tilde{B}^{\dagger,p^n r} \otimes_{B_r^{\dagger,p^n r}} D_L^{\dagger,p^n r} \cong \tilde{B}^{\dagger,p^n r} \otimes_{\mathbb{Q}_p} V$.

Now we have to deal with the action of ϕ . For any t > 0, let $B_{L,\infty}^{\dagger,t} := \bigcup_{n \ge n(L)} \phi^{-n} (B_L^{\dagger,p^{nt}})$. Note that $B_{L,\infty}^{\dagger,p^{n+1}r} \otimes_{B^{\dagger,p^{n+1}r}} D_L^{\dagger,p^{n+1}r}$ and $B_{L,\infty}^{\dagger,p^{n+1}r} \otimes_{\phi(B^{\dagger,p^{n+1}r})} \phi(D_L^{\dagger,p^{n+1}r})$ are both finite free $B_{L,\infty}^{\dagger,p^{n+1}r}$ -submodules of $(\tilde{B}^{\dagger,p^{n+1}r} \otimes_{\mathbb{Q}_p} V)^{H_L}$ of dimension d and stable under G_K . Thus, by Theorem 6.3, there exists a finite free $B_{L,\infty}^{\dagger,p^{n+1}r}$ -submodule $D_{L,\infty}^{\dagger,p^{n+1}r}$ of $(\tilde{B}^{\dagger,p^{n+1}r} \otimes_{\mathbb{Q}_p} V)^{H_L}$, such that the above two modules are contained in $D_{L,\infty}^{\dagger,p^{n+1}r}$. In particular, the matrix of ϕ under a basis of $D_L^{\dagger,p^{n}r}$ belongs to $\phi^{-m}(B_L^{\dagger,p^{m+n+1}r})$ for $m \in \mathbb{Z}_{>0}$ large enough.

We finish the proof by putting $s(V) := p^{m+n+1}r$.

Proposition 6.7 (cf. [Wan20, Theorem 2.20(1)]). For any $V \in \operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ of dimension d, let D_L^{\dagger} be the finite free $(\phi, \operatorname{Gal}(L_{\infty}/K))$ -module of dimension d over B_L^{\dagger} in the above lemma. Then $B_L \otimes_{B_L^{\dagger}} D_L^{\dagger} \cong (B \otimes_{\mathbb{Q}_p} V)^{H_L} =: D_L(V)$ in $\operatorname{Mod}_{B_L}^{\text{ét}}(\phi, \Gamma_L)$.

Moreover, $D^{\dagger}(V)$ is an étale (ϕ, Γ_K) -module over B_K^{\dagger} of dimension d and $B_K \otimes_{B_K^{\dagger}} D^{\dagger}(V) \cong D(V)$ via the map $\lambda \otimes x \mapsto \lambda x$, which is natural.

Proof. Let D_L^{\dagger} be the Moreover, $\tilde{B}^{\dagger} \otimes_{B_L^{\dagger}} D_L^{\dagger} \cong \tilde{B}^{\dagger} \otimes_{\mathbb{Q}_p} V$ via the map $\lambda \otimes x \mapsto \lambda x$. We want to compare both sides over rings without tilde.

Let $D_L := B_L \otimes_{B_L^{\dagger}} D_L^{\dagger}$. Then $\tilde{B} \otimes_{B_L} D_L \cong \tilde{B} \otimes_{\mathbb{Q}_p} V$. Let \mathcal{L} be a lattice in V. Since $\tilde{B} = \tilde{A}[1/p]$ and B_L is a subfield of \tilde{B} , $D_L \cap \tilde{A} \otimes_{\mathbb{Z}_p} \mathcal{L}$ is an A_L -lattice in D_L . Thus, D_L is étale by a similar argument in Proposition 4.18. By Theorem 4.20, there is a $W \in \operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ such that $\tilde{B} \otimes_{\mathbb{Q}_p} W \cong \tilde{B} \otimes_{B_L} D_L \cong \tilde{B} \otimes_{\mathbb{Q}_p} V$ as (ϕ, G_K) -modules over \tilde{B} . Since $\tilde{B}^{\phi=1} = \mathbb{Q}_p$, $W \cong V$ in $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ by taking the ϕ -fixed points. Thus, $D_L \cong (B \otimes_{\mathbb{Q}_p} V)^{H_L}$ in $\operatorname{Mod}_{B_L}^{\text{ét}}(\phi, \Gamma_L)$.

Note that D_L^{\dagger} admits compatible monomorphisms to both $\tilde{B}^{\dagger} \otimes_{\mathbb{Q}_p} V$ and $B \otimes_{\mathbb{Q}_p} V$. Therefore, there is a monomorphism $D_L^{\dagger} \hookrightarrow (B^{\dagger} \otimes_{\mathbb{Q}_p} V)^{H_L}$ in $\operatorname{Mod}_{B_L^{\dagger}}^{\operatorname{\acute{e}t}}(\phi, \Gamma_L)$. Note that $\dim((B^{\dagger} \otimes_{\mathbb{Q}_p} V)^{H_L}) \leqslant \dim(V) = \dim(D_L) = \dim(D_L^{\dagger})$. We have that $D_L^{\dagger} \cong (B^{\dagger} \otimes_{\mathbb{Q}_p} V)^{H_L}$. Similarly, we have $B_L \otimes_{B_L^{\dagger}} D_L^{\dagger} \cong D_L(V)$ in $\operatorname{Mod}_{B_L}^{\operatorname{\acute{e}t}}(\phi, \Gamma_L)$.

Finally, we use the Galois descent to reduce to the field K. Note that $B_K^{\dagger} = (B_L^{\dagger})^{H_K/H_L}$. By Proposition 3.3, $H^1_{\text{cts}}(H_K/H_L, \operatorname{GL}_d(B_L^{\dagger})) \cong 0$. Therefore, $D^{\dagger}(V) \cong \left((B^{\dagger} \otimes_{\mathbb{Q}_p} V)^{H_L} \right)^{H_K/H_L}$ is of dimension d, and $D^{\dagger}(V)$ is étale since D_L is étale. Thus, $B_L^{\dagger} \otimes_{B_K^{\dagger}} D^{\dagger}(V) \cong D_L^{\dagger}$. Hence,

$$B \otimes_{B_K^{\dagger}} D^{\dagger}(V) \cong B \otimes_{B_L^{\dagger}} D_L^{\dagger} \cong B \otimes_{B_L} D_L(V) \cong B \otimes_{\mathbb{Q}_p} V$$

By taking H_K -fixed points on both sides, we get $B_K \otimes_{B_K^{\dagger}} D^{\dagger}(V) \cong D(V)$ in $\operatorname{Mod}_{B_K}^{\text{\'et}}(\phi, \Gamma_L)$.

References

- [BC09] Oliver Brinon and Brian Conrad. Cmi summer school notes on p-adic hodge theory. https://math.stanford.edu/~conrad/papers/notes.pdf, 2009. 3.7
- [Ber10] Laurent Berger. Galois representations and (,Γ)-modules. http://perso.enslyon.fr/laurent.berger/autrestextes/CoursIHP2010.pdf, 2010. 3.1, 3.3, 3.6, 3.8, 4.1, 4.9, 5.7, 6.1, 1, 2, 6.2, 6.3, 6.4
- [FO22] Jean-Marc Fontaine and Yi Ouyang. Theory of p-adic galois representations. http: //staff.ustc.edu.cn/~yiouyang/galoisrep.pdf, 2022. 4.5
- [SW20] Peter Scholze and Jared Weinstein. Berkeley lectures on p-adic geometry, volume 207 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2020. 2, 2.4, 2.12, 2.13, 2.2, 2.16, 2.18, 2.19
- [Wan20] Yupeng Wang. Overconvergent theory. http://faculty.bicmr.pku.edu.cn/ ~ruochuan/2020summer/Wang-Yupeng.pdf, 2020. 5, 5.1, 5.2, 5.3, 5.6, 5.8, 6.7