p-adic Galois representations and (*φ,* Γ)-modules

Hongxiang Zhao

April 14, 2024

Abstract

In this note we present a basic theory of *p*-adic Galois representations and (*φ,* Γ) modules. In particular, we prove a series of equivalences between both (1-)categories over various rings following Fontaine and Cherbonnier–Colmez.

Contents

1 Notations

Suppose *K* is a field.

Let *G^K* denote the absolute Galois group of *K*.

Let $\chi\colon G_{\mathbb{Q}_p}\to \mathbb{Z}_p^\times$ be the cyclotomic character.

If K is a finite extension of \mathbb{Q}_p , then let K_∞ be the infinite cyclotomic extension over $K.$ Let K_0 be the maximal unramified extension of \mathbb{Q}_p in K_∞ and k_{K_∞} be the residue field of K_{∞} . Let $H_K:=\ker(\chi|_{G_K})\cong G_{K_{\infty}}$ and $\Gamma_K:=G_K/H_K\cong \mathrm{Gal}(K_{\infty}/K)$ by local class field theory.

For a commutative ring R, let $\mathbb{W}_P(R)$ denote the ring of p-typical Witt vectors over R.

Let *R* be a topological ring and *G* be a topological group acting continuously on *R*. Let $\text{Rep}_R(G)$ denote the abelian category of continuous (finite free) *R*-representations of *G*.

2 Perfectoid rings and tiltings

The idea of the perfectoid rings is to show a correspondence between local fields of mixed characteristic and equal characteristic. In this section, we give a brief introduction to the basic settings in perfectoid rings, basically following [SW20].

The content of this section will not be heavily used in the following sections. We include them here because it provides a modern approach to [Coro](#page-22-0)llary 2.20 and for future study in *p*-adic geometry beyond this note.

2.1 Huber rings

Definition 2.1 (Huber ring)**.** A topological ring *A* is *Huber* if *A* admits an open subring $A_0 \, \subset \, A$ and a finitely generated ideal $I \, \subset \, A_0$ such that $\{I^n \colon n \, \geqslant \, 0\}$ forms a basis of neighborhoods of 0.

Any such A_0 is called *a ring of definition of A*.

Example 2.2. *1.* $(\mathbb{Q}_p, \mathbb{Z}_p)$ *and* $(\mathbb{Q}_p, \mathbb{Q}_p)$ *are both Huber.*

2. If k is a perfect field of characteristic p, then $(\mathbb{W}_P(k)[\![x_1,\cdots,x_n]\!], \mathbb{W}_P(k)[\![x_1,\cdots,x_n]\!])$ *is Huber with respect to the* (*p, x*1*, · · · , xn*)*-adic topology. This ring classifies deformations of formal group laws and shows up further in chromatic homotopy theory.*

There is a simple characterization of a ring of definition via boundedness.

Definition 2.3 (Bounded subset)**.** A subset *S* of a topological ring *A* is *bounded* if for all open neighborhoods *U* of 0, there exists an open neighborhood *V* of 0 such that $VS \subset U$.

Lemma 2.4 (cf. [SW20, Lemma 2.2.4]). *A subring* A_0 *of a Huber ring* A *is a ring of definition if and only if* A_0 *is open and bounded.*

The universal [ring of](#page-22-0) definition is given by the so-called power-bounded elements.

Definition 2.5 (Power-bounded elements)**.** Let *A* be a Huber ring. An element *x ∈ A* is *power-bounded* if the subset $\{x^n : n \geq 0\}$ is bounded. Let $A^\circ \subset A$ be the subring of power-bounded elements.

Proposition 2.6. *1. Any ring of definition* $A_0 \subset A$ *is contained in* A° *.*

- *2. The ring A◦ is the filtered union of the rings of definition A*⁰ *⊂ A.*
- *Proof.* 1. Suppose $x \in A_0$, so $x^n \in A_0$ for any $n \geqslant 0$. Since A_0 is bounded by the above lemma, *x ∈ A◦* .
	- 2. We first show that the poset of rings of definition is filtered. Suppose $A_0, A_0' \subset A$ are rings of definition. Let $A_0'' \subset A$ be the subring generated by A_0, A_0' . For any $U \subset A$ open neighborhood of 0, we want to find an open neighborhood *V ⊂ A* of 0 such that $VA_{0}^{\prime\prime}\subset U.$ We may assume that U is closed under addition (in fact, we can take $U = I^n$, where I is the ideal in the definition of A and A_0). Then there is an open neighborhood $U_1 \subset A$ of 0 such that $U_1 A_0 \subset U$ and there is an open neighborhood $V\, \subset\, A$ of 0 such that $V A_0'\, \subset\, U_1.$ Any element in A_0'' can be written as a linear $\sum_i x_i y_i$ where $x_i \in A_0$ and $y_i \in A_0'$. Thus, we have

$$
(\sum_i x_i y_i)V\subset \sum_i (x_i y_i V)\subset \sum_i x_i U_1\subset \sum_i U\subset U
$$

Therefore, A_0'' is bounded and further a ring of definition by the above lemma.

Now pick an element $x \in A^\circ$. Suppose A_0 is a ring of definition. Then $A_0[x]$ is still a ring of definition since it is still bounded.

 \Box

Definition 2.7 (Uniform Huber ring)**.** A Huber ring *A* is *uniform* if *A◦* is bounded, or equivalently, *A◦* is a ring of definition.

Definition 2.8 (Huber pair and ring of integral elements)**.** A *Huber pair* is a pair (*A, A*⁺), where *A* is a Huber ring and $A^+ \subset A$ is an open and integrally closed subring of A.

Such *A*⁺ is called *a ring of integral elements*.

Let $A^{\circ\circ} \subset A$ be the subset of topologically nilpotent elements. For any $x \in A^{\circ\circ}$, $x^n \in A^+$ for *n* large enough since A^+ is open. Therefore, *x* must lie in A^+ since A^+ is integrally closed, so we have $A^{\circ\circ} \subset A^+$ for any ring of integral elements A^+ .

To sum up, we have the following inclusions between subrings in a Huber ring *A*.

$$
A^{\circ\circ} \longrightarrow A^{+} \longrightarrow A^{\circ} \longrightarrow A
$$

$$
\uparrow\sim
$$

$$
A_{0} \longrightarrow \bigcup A_{0}
$$

where the union is filtered and is taken over all rings of definition A_0 in A .

2.2 Perfectoid rings

Definition 2.9 (Tate ring and pseudo-uniformizer)**.** A Huber ring *A* is *Tate* if it contains a topologically nilpotent unit. A *pseudo-uniformizer* in *A* is a topologically nilpotent unit.

Definition 2.10 (Perfectoid ring and perfectoid field)**.** A complete Tate ring *R* is *perfectoid* if R is uniform and there exists a pseudo-uniformizer ϖ of R lives in R° such that p divides ϖ^p in R° , and the p -th power Frobenius map

$$
\phi\colon R^{\circ}/\varpi\to R^{\circ}/\varpi^p
$$

is an isomorphism.

A *perfectoid field* is a perfectoid ring *R* which is a non-archimedean field.

Proposition 2.11. *Suppose R is a complete Tate ring that admits a pseudo-uniformizer* ϖ of R *lives in* R° *such that* p *divides* ϖ^p *in* R° *. Then the* p *-th power Frobenius map φ*: *R◦/\$ → R◦/\$^p is an isomorphism if and only if the Frobenius map R◦/p → R◦/p is surjective.*

In particular, the above definition does not depend on the choice of ϖ .

Proof. If $x \in R^{\circ}$ and $x^p = \varpi^p y$ for some $y \in R^{\circ}$, then $(x/\varpi)^p \in R^{\circ}$. By the definition of $R^{\circ}, x/\varpi \in R^{\circ}$. Therefore, ϕ is always injective.

We have a commutative diagram.

Thus, the surjectivity of the Frobenius on *R◦/p* implies the surjectivity of *φ*.

Conversely, if ϕ is surjective, then for any $x \in R^\circ$, we can approximate x successively via ϕ since ϖ is topologically nilpotent and R is complete, i.e., $x=x_0^p+x_1^p\varpi^p+x_2^p\varpi^{2p}+\cdots$ for some $x_0, x_1, \dots \in R^\circ$. Thus, $x - (x_0 + x_1\varpi + x_2\varpi^2 + \dots) \in pR^\circ$. \Box

Proposition 2.12 (cf. [SW20, Proposition 6.1.6])**.** *Let R be a complete Tate ring of characteristic p. Then R is perfectoid if and only if R is perfect.*

Proposition 2.13 (cf. [[SW20,](#page-22-0) Proposition 6.1.9])**.** *Let K be a non-archimedean field. Then K is a perfectoid field if and only if the following conditions hold.*

- *1. K is not discretel[y value](#page-22-0)d.*
- *2.* $|p| < 1$ *.*
- *3.* ϕ : $\mathcal{O}_K/p \rightarrow \mathcal{O}_K/p$ *is surjective.*

We give the following examples of perfectoid rings without proof. Some of them can be found in [SW20, Example 6.1.5].

Example 2.14. *1. If A is perfectoid, A◦ is also perfectoid.*

- 2. By [the ab](#page-22-0)ove criterion, \mathbb{Q}_p is not perfectoid, nor any finite extension of \mathbb{Q}_p .
- *3.* The *p*-adic completion \mathbb{C}_p of $\overline{\mathbb{Q}_p}$ is perfectoid.
- 4. The p-adic completion $\mathbb{Q}_p^{\text{cycl}}$ of $\mathbb{Q}_p(\mu_{p^\infty})$ is perfectoid.
- *5. The integer rings of* \mathbb{C}_p and $\mathbb{Q}_p^{\text{cycl}}$ are also perfectoid.
- *6. Suppose K is a finite extension of* Q*p. Fix a uniformizer π of K and a Lubin-Tate formal group law* $F \in \mathcal{O}_K[[X, Y]]$. Then the *p*-adic completion of K_π associated to F *in explicit local class field theory by Lubin and Tate is a perfectoid field.*
- *7. The T*-adic completion $\mathbb{F}_p((T^{1/p^{\infty}}))$ of $\mathbb{F}_p((T))(T^{1/p^{\infty}})$ is perfectoid.

2.3 Tilting and the equivalence of étale sites

Definition 2.15 (Tilt)**.** Let *R* be a perfectoid ring. The *tilt* of *R* is

$$
R^\flat := \lim_{x \mapsto x^p} R
$$

with the limit topology. A priori this is only a topological multiplicative monoid. In particular, $\,$ we have a continuous and multiplicative map $(-)^{\sharp} \colon R^{\flat} \to R$ projecting to the first coordinate. Furthermore, we can promote R^\flat to a topological ring where the addition is given by

$$
(x_0, x_1, \dots) + (y_0, y_1, \dots) := (z_0, z_1, \dots)
$$

where

$$
z_i := \lim_{n \to +\infty} (x_{i+n} + y_{i+n})^{p^n}.
$$

Note that $(-)^\sharp$ is not additive.

Lemma 2.16 (cf. [SW20, Lemma 6.2.2]). 1. The above addition promotes R^{\flat} to a topo*logical perfect Fp-algebra.*

2.

$$
R^{\flat^{\circ}} \cong R^{\circ \flat} := \lim_{x \mapsto x^p} R^{\circ} \cong \lim_{x \mapsto x^p} R^{\circ}/p \cong \lim_{\phi} R^{\circ}/\varpi
$$

where $\varpi \in R^{\circ}$ *is a pseudo-uniformizer which divides p in* R° *.*

3. There exists a pseudo-uniformizer ϖ of R lives in R ^{\circ} such that p divides ϖ^p in R° , and admits a sequence of p-th power roots ϖ^{1/p^n} in R° , and the sequence ϖ^\flat := $(\varpi,\varpi^{1/p},\cdots)\in R^{\flat^\circ}$ is a pseudo-uniformizer of R^\flat . Furthermore, $R^\flat=R^{\flat^\circ}[1/\varpi^\flat].$

 ${\bf R}$ emark 2.17. *Suppose* K *is a perfectoid field. Then the composition* $K^\flat \stackrel{(-)^\sharp}{\longrightarrow} K \stackrel{|{\cdot}|}{\longrightarrow} \mathbb{R}_{\geqslant 0}$ promotes K^\flat to a complete non-archimedean field of characteristic p *.*

Example 2.18 (cf. [SW20, Example 6.2.4]). Let $\zeta_p, \zeta_{p^2}, \cdots$ be a compatible system of p p *th power roots of unity in* $\mathbb{Q}_p^{\text{cycl}}$, $\epsilon := (1,\zeta_p,\zeta_{p^2},\cdots) \in (\mathbb{Q}_p^{\text{cycl}})^{\flat}$ *. Then* $\bar{\pi} := \epsilon - 1$ *is a* p seudo-uniformizer of $(\mathbb{Q}_p^{\text{cycl}})^{\flat}$ $(\mathbb{Q}_p^{\text{cycl}})^{\flat}$ $(\mathbb{Q}_p^{\text{cycl}})^{\flat}$. In fact, $(\mathbb{Q}_p^{\text{cycl}})^{\flat} \cong \mathbb{F}_p((T^{1/p^{\infty}}))$ sending $\bar{\pi}$ to T .

Theorem 2.19 (The equivalence of étale sites, cf. [SW20, Theorem 7.3.1 and Theorem 7.3.2])**.** *Let K be a perfectoid field. Then there is an equivalence between the sites of finite étale algebras over* K *and over* K^\flat *.*

 $\mathbf{Corollary 2.20.}$ We have that $G_{(\mathbb{Q}_p^{\text{cycl}})^{\flat}} \cong G_{\mathbb{Q}_p^{\text{cycl}}}\cong H_{\mathbb{Q}_p}.$

Thus, instead of working over $\mathbb{Q}_p^{\text{cycl}}$, we can move to its tilt, which is of characteristic p .

3 Travel through a series of rings

Now we will define a series of rings in *p*-adic Galois representations. The goal is to transfer from the original base rings of *p*-adic Galois representations, such as \mathbb{F}_p , \mathbb{Z}_p and \mathbb{Q}_p , to rings that carry more structures while preserve the Galois groups.

Various but similar notations of rings are very confusing for a first read. It is always a good idea to keep in mind a picture of ring extensions. The rules of naming the rings are the following.

The letter *A* stands for a topological ring with a non-archimedean valuation, *B* stands for inverting *p* in *A* (most time *B* stands for a field and *A* will stand for the integer ring of *B*), and *E* stands for the reduction of *A* modulo *p*. The rings with tilde will always be larger than the one without tilde.

3.1 Rings of characteristic *p*

We will start with the series of rings named by *E*, which will deal with the *p*-adic Galois representations over \mathbb{F}_p .

Let $\tilde{E}:=\mathbb{C}_p^\flat, \ \tilde{E}_{\mathbb{Q}_p}:= (\mathbb{Q}_p^{\text{cycl}})^\flat$ and $E_{\mathbb{Q}_p}:=\mathbb{F}_p(\!(T)\!)$. Let $\epsilon:=(1,\zeta_p,\zeta_{p^2}\cdots)$ for a chosen compatible system of *p*-th power roots of unity and $\bar{\pi} := \epsilon - 1$ as in Example 2.18. Define the non-archimedean valuation val_E on \tilde{E} via Remark 2.17. Then

$$
\mathrm{val}_{\tilde{E}}(\bar{\pi}) = \mathrm{val}_{p}(\lim_{n \to +\infty} (\zeta_{p^n} - 1)^{p^n}) = \lim_{n \to +\infty} p^n \mathrm{val}_{p}(\zeta_{p^n} - 1) = \frac{p}{p-1} > 0.
$$

Thus, there is an inclusion $E_{\mathbb Q_p}\hookrightarrow \tilde E_{\mathbb Q_p}$ given by $T\mapsto \bar\pi.$ Let $E:=\mathbb F_p(\!(T)\!)^{\rm sep}$ in $\tilde E.$ In other words, we have the following diagram of field extensions.

$$
\mathbb{C}_p^{\flat} =: \tilde{E} \longleftrightarrow E := \mathbb{F}_p((T))^{\text{sep}}
$$

\n
$$
\begin{array}{ccc}\n&\downarrow & \\
&\downarrow & \\
(\mathbb{Q}_p^{\text{cycl}})^{\flat} =: \tilde{E}_{\mathbb{Q}_p} & \longleftrightarrow E_{\mathbb{Q}_p} := \mathbb{F}_p((T))\n\end{array}
$$

All of these rings are characteristic *p*. Thus, they carry an action by the Frobenius map ϕ . Note that $\tilde E$ and $\tilde E_{\mathbb Q_p}$ are perfect while E and $E_{\mathbb Q_p}$ are not. Furthermore, $\tilde E:=\mathbb C_p^\flat$ carries an action by $G_{\mathbb{Q}_p}$ component-wise.

 $\bf{Theorem~3.1}$ (cf. [Ber10, Theorem 15.4]). *The canonical map* $H_{\mathbb{Q}_p}\cong G_{\tilde{E}_{\mathbb{Q}_p}}\to \mathrm{Gal}(E/E_{\mathbb{Q}_p})$ *is an isomorphism.*

Recall that the [first is](#page-22-1)omorphism here is given by Corollary 2.20.

If K is a finite extension of \mathbb{Q}_p , let $E_K:=E^{H_K}$, which is a finite extension of $E_{\mathbb{Q}_p}$ by the above theorem and Galois correspondence.

Lemma 3.2. *If* $\bar{\pi}_K$ *is a uniformizer of* E_K *, then* $T \mapsto \bar{\pi}_K$ *defines an isomorphism* k_{K_∞} (T)) \cong *EK.*

Proof. Since E_K is a finite extension of $E_{\mathbb{Q}_p}:=\mathbb{F}_p(\!(T)\!)$ and the residue field of E_K is k_{K_∞} , we conclude by the structure theorem for local fields of equal characteristic. \Box

We have the following generalization of Hilbert's Theorem 90 and its corollary.

Proposition 3.3 (cf. [Ber10, Corollary 7.3]). Let L/K be a Galois extension with $G :=$ $\mathrm{Gal}(L/K)$. If we equip L with the discrete topology, then $H^1_{\mathrm{cts}}(G,L)=0$ and $H^1_{\mathrm{cts}}(G,\mathrm{GL}_n(L))=0$ 0 *for all* $n \ge 1$ *.*

 $\bf{Theorem 3.4.}$ If K is a finite extension of \mathbb{Q}_p , then $H^1_{\mathrm{cts}}(H_K,E)=0$ and $H^1_{\mathrm{cts}}(H_K,{\rm GL}_n(E))=0$ 0 for all $n \geq 1$. Here *E* is equipped with the discrete topology.

3.2 Rings of characteristic 0

Next, we will introduce the series of rings named by *A* and *B*, which will deal with *p*-adic Galois representations over \mathbb{Z}_p and \mathbb{Q}_p respectively.

A canonical way to transfer from characteristic *p* to characteristic 0 is via the *p*-typical ring of Witt vectors. However, since *E* is not perfect, $\mathbb{W}_P(E)$ is not well-behaved (say, $\mathbb{W}_P(E)$ is not p-adically complete and elements in $\mathbb{W}_P(E)$ do not have a series representation). Thus, we need more works to lift the rings E and $E_{\mathbb{Q}_p}$ to characteristic $0.$

Firstly, we want to introduce the weak topology on the ring of *p*-typical Witt vectors. Suppose R is a perfect ring of characteristic 0 complete with respect to a valuation val. Then for each $k > 0$, define $w_k \colon \mathbb{W}_P(R) \to \mathbb{R} \cup \{+\infty\}$ by $w_k(x) := \inf_{i \leq k} \text{val}(x_i)$ for $x=\sum_{i>0}p^i[x_i]_P$ in $\mathbb{W}_P(R)$, where $[-]_P$ is the Teichmüller representative. Then $w_k(x)=+\infty$ if and only if $x\in p^{k+1}\mathbb{W}_P(R)$ and $w_k(x+y)\geqslant \inf(w_k(x),w_k(y))$ for all $x,y\in\mathbb{W}_P(R).$

Definition 3.5 (Weak topology on the ring of *p*-typical Witt vectors)**.** The *weak topology on* $\mathbb{W}_P(R)$ is the topology defined by w_k for all k .

Proposition 3.6 (cf. [Ber10, Proposition 16.4]). The ring $\mathbb{W}_P(R)$ is complete with respect *to the weak topology.*

Let \tilde{A} [:=](#page-22-1) $\mathbb{W}_P(\tilde{E})$:= $\mathbb{W}_P(\mathbb{C}_p^\flat)$ and \tilde{B} := $\tilde{A}[1/p]$:= $\mathbb{W}_P(\mathbb{C}_p^\flat)[1/p].$ Note that \tilde{A} is equipped with both *p*-adic topology and the weak topology discussed above. Furthermore, \tilde{A} is complete with respect to both topologies. We equip $\tilde{B} = \cup_{k>0} p^{-k} \tilde{A}$ with the colimit topologies of the *p*-adic topology and the weak topology on *A*˜ respectively. As a ring of Witt vectors, \tilde{A} is equipped with a Frobenius map ϕ . Also, there is a lift of the $G_{\mathbb{Q}_p}$ -action on \tilde{E} to \tilde{A} .

In order to lift the rings *E* and *E^K* to characteristic 0, where *K* is a finite extension of \mathbb{Q}_p , let $A_K:=(\mathbb{W}_P(k_{K_\infty})(\!(T)\!))^\wedge_p$ and $B_K:=A_K[1/p].$ Similar to the inclusions $E_{\mathbb{Q}_p}\hookrightarrow$ $\tilde{E}_{\mathbb{Q}_p}\hookrightarrow\tilde{E}$, we have an inclusion $A_K\hookrightarrow\tilde{A}$ given by $T\mapsto[\bar{\pi}_K]_P$, where $\bar{\pi}_K$ is a uniformizer $\mathsf{p} \in E_K \cong k_{K_\infty}(\!(T)\!) \hookrightarrow \tilde{E}.$ Note that $w_k([\bar{\pi}_K]) = \mathrm{val}_E(\bar{\pi}_K) > 0$, so this map is well-defined. This map also extends to an inclusion $B_K \hookrightarrow \overline{B}$.

Let $A := (\operatorname{colim}_K A_K)^\wedge_p$ and $B := A[1/p],$ where K runs through all finite extensions of \mathbb{Q}_p . Then $A/pA ≅ \operatorname{colim}_K E_K = E$. By construction, A_K inherits a $G_{\mathbb{Q}_p}$ -action from \tilde{A} and is fixed by H_K .

Lemma 3.7 (cf. [BC09, Lemma 13.5.7]). *For each finite extension K* of \mathbb{Q}_p , $A^{H_K} = A_K$.

Since we mapped T to $[\bar{\pi}_K]_P$ in the construction of A_K , A_K is ϕ -stable in A . Thus, A and B are ϕ -stabl[e in](#page-22-2) A .

The following proposition is a corollary of Proposition 3.3.

Proposition 3.8 (cf. [Ber10, Proposition 7.4]). Let ϖ be a topologically nilpotent element *of a ring R* which is complete for the ϖ -adic [topology and in](#page-8-1) which ϖ is not a zero divisor. *Let G be a group whic[h acts](#page-22-1) on R continuously and fixes* ϖ *.*

 $F H^1_{\text{cts}}(G, \text{GL}_n(R/\varpi R)) = H^1_{\text{cts}}(G, R/\varpi R) = 0$ and the map $\text{GL}_n(R) \to \text{GL}_n(R/\varpi R)$ *is surjective, then* $H^1_{\text{cts}}(G, \text{GL}_n(R)) = H^1_{\text{cts}}(G, R) = 0$ *.*

 $\bf{Theorem 3.9.}$ If K is a finite extension of \mathbb{Q}_p , then $H^1_{\text{cts}}(H_K, A) = 0$ and $H^1_{\text{cts}}(H_K, {\rm GL}_n(A)) = 0$ 0 for all $n \geq 1$. Here A is equipped with the *p*-adic topology.

Proof. Note that *p* is a topologically nilpotent element of *A*, *A* is *p*-complete and *p* is not a zero-divisor in A. Every lift of $\operatorname{GL}_n(E)$ to $\operatorname{Mat}_n(A)$ has determinant not in pA. Since *A/pA* \cong *E* is a field, every lift is invertible. Therefore, we conclude by the above proposition \Box and Theorem 3.4.

 $\textsf{Note that } B/B_K$ is not algebraic, so we cannot prove $H^1_{\textup{cts}}(H_K, B) = H^1_{\textup{cts}}(H_K, \textup{GL}_d(B)) = 0$ 0 via [Proposition](#page-8-2) 3.3. Besides, we cannot use the above proposition since *B* is a field.

To sum up, we have the following diagram of extensions of rings.

where the rings without tilde named by *E*, *A* and *B* are Laurent series, *p*-adic completion of Laurent series and *p*-adic completion of Laurent series inverting *p* over various coefficients respectively.

4 (*φ,* Γ)**-modules**

In this section, we prove a series of equivalences between the $(1-)$ categories of Galois representations and (*φ,* Γ)-modules, which reduces Galois representations to some explicit objects that we can compute with.

Let *R* substitute for one of the letters *E, A* and *B* in this paragraph. Conceptually, for a finite extension K of \mathbb{Q}_p , the construction of R_K has and only has contained all the ramification information (by which we mean K_{∞}), so that H_K acts freely on R and R^{H_K} = *RK*. Therefore, we can reduce Galois representations over *R* to the totally ramified part by taking the *HK*-fixed points, which is controlled by Γ*K*. On the other hand, the information of unramified part is determined by the action of Frobenius map *φ*.

4.1 Definition of (*φ,* Γ)**-modules**

In this subsection, suppose *R* is a commutative ring with an endomorphism *σ*.

Definition 4.1 (ϕ -module). A ϕ -module over R is a R-module M together with a σ semilinear endomorphism $\phi \colon M \to M$, i.e., ϕ is additive and $\phi(rm) = \sigma(r)\phi(m)$ for all $r \in R$ and $m \in M$.

Equivalently, a ϕ -module over *R* is a *R*-module *M* with a *R*-linear morphism $\Phi \colon M \to$ *σ [∗]M*.

For simplicity, we will only denote a ϕ -module (M,Φ) by the underlying module M.

Definition 4.2 (Étale *φ*-module)**.** An *étale φ-module over R* is a *φ*-module *M* such that Φ is an isomorphism.

The following is an easy lemma. We omit the proof.

Lemma 4.3. *If D is a finite free φ-module of dimension n over R, then D is étale if and only if* $\text{Mat}(\phi) \in \text{GL}_n(R)$ *.*

Suppose Γ is a group and *R* is equipped with an action of Γ, which commutes with *σ*.

Definition 4.4 ((ϕ, Γ) -module). A (ϕ, Γ) -module over *R* is a ϕ -module with a semilinear Γ-action commuting with *φ*.

Similarly, we will only denote a (ϕ, Γ) -module by its underlying module.

Suppose now that R and Γ are both equipped with Hausdorff and complete topology. In addition, suppose that *R* is a Noetherian flat *R*-algebra via the structure continuous map *σ*.

Definition 4.5 (Étale (*φ,* Γ)-module)**.** An *étale* (*φ,* Γ)*-module over R* is a (*φ,* Γ)-module over *R* such that *φ* and the Γ-action is continuous, and it is étale as a *φ*-module.

Let $\rm Mod_R^{\text{\'et}}(\phi, \Gamma)$ denote the abelian category of (ϕ, Γ) -modules over R (cf. [FO22, Proposition 3.19]).

Remark 4.6. *When we discuss étale* (*φ,* Γ)*-modules over EK, we consider the t[opolo](#page-22-3)gy given by* val_{*E*}.

When we discuss étale (ϕ, Γ) -modules over A_K and B_K , we consider the weak topology *on them.*

Notation. *For simplicity (and as done in many references, such as [Ber10]), we will assume that all φ-modules and* (*φ,* Γ)*-modules are finite free.*

4.2 (*φ,* Γ)**-modules and** *p***-adic Galois representations**

Suppose *G* is a topological group, *R* is a topological commutative ring with a continuous *G*-action and *M* is a finite free *R*-module of dimension *n* with a continuous semilinear *G*action. Pick a basis *e* for *D*. Then the map $G \to GL_n(R)$ given by $g \mapsto \text{Mat}_e(g)$ is an 1-cocycle in $C^1_{\mathrm{cts}}(G, \mathrm{GL}_n(R))$. If we choose another basis for D , the 1-cocycle will differ by an 1-coboundary. Furthermore, it gives us a (non-canonical) bijection of sets

 $\{$ semilinear representations of *G* of dimension $n\}$ /isomorphisms $\cong H^1(G,\operatorname{GL}_n(R))$.

By the above discussion and Theorem 3.9 and Theorem 3.4, we get the following.

Corollary 4.7. *Suppose K is a finite extension of* \mathbb{Q}_p *. Every semilinear representation of* H_K *of dimension* n *over* A *and* E *[is \(non-cano](#page-9-0)nica[lly\) isomorphi](#page-8-2)c to* A^n *and* E^n *respectively.*

In the rest of this section, suppose K is a finite extension of \mathbb{Q}_p .

Proposition 4.8. *Suppose V is a* \mathbb{F}_p -representation of G_K of dimension *n* and $D(V) :=$ $(E \otimes_{\mathbb{F}_p} V)^{H_K}$. Then $D(V)$ is an étale (ϕ, Γ_K) -module over E_K of dimension n , $E \otimes_{E_K} D(V) \cong$ $E \otimes_{\mathbb{F}_p} V$ *in the category of* (ϕ, G_K) *-modules via the map* $\lambda \otimes x \mapsto \lambda x$ *. In particular, V* \cong $(E \otimes_{E_K} D(V))$ $\phi=1$ *via the above isomorphism.*

Proof. By Corollary 4.7, $E \otimes_{\mathbb{F}_p} V \simeq E^n$ in the category of representations of H_K over E . Therefore, $D(V) \cong E_K^n$ in the category of E_K -modules. Since ϕ commutes with the H_K action on *E*, $D(V)$ [pro](#page-12-1)motes to a ϕ -module over E_K . Since the remaining Γ_K -action on *D*(*V*) acts trivially on *E*, it commutes with $φ$. Thus, *D*(*V*) promotes to a $(φ, Γ_K)$ -module over E_K .

Now we show that $D(V)$ is étale. Suppose $e = (e_i)$ is a \mathbb{F}_p -basis for V , $f = (f_i)$ is an *E_K*-basis for $D(V)$ and $f = eA$ for some $A \in GL_n(E)$. Suppose $\phi(f) = fB$ for some $B \in \text{Mat}_n(E_K)$. Then $e\phi(A) = \phi(f) = fB = eAB$. Thus, $B = A^{-1}\phi(A) \in \text{GL}_n(E_K)$, which implies that $D(V)$ is étale.

Since $\dim(D(V)) = \dim(V)$, there is an *E*-basis of $E \otimes_{\mathbb{F}_p} V$ lives in $D(V)$. Thus, $E \otimes_{E_K} D(V) \cong E \otimes_{\mathbb{F}_p} V$ via the map $\lambda \otimes x \mapsto \lambda x$. This morphism commutes with ϕ and the *GK*-action. Thus, this isomorphism promotes to an isomorphism in the category of (ϕ, Γ_K) -modules.

Since
$$
\mathbb{F}_p = E^{\phi=1}
$$
, $V \cong (E \otimes_{E_K} D(V))^{\phi=1}$.

Actually, the functor *D* is an equivalence. To prove this, we need the following theorem.

Theorem 4.9 (cf. [Ber10, Theorem 8.6])**.** *If k is a separably closed field of characteristic p, and V is an étale* ϕ -module over *k*, then *V* admits a basis fixed by ϕ and $1 - \phi$: $V \to V$ is *surjective.*

Proposition 4.10. *Suppose D* is an étale (ϕ, Γ_K) -module over E_K of dimension *n*. Then $(E\otimes_{E_K}D)^{\phi=1}$ is a \mathbb{F}_p -representation of G_K of dimension n and $E\otimes_{\mathbb{F}_p} (E\otimes_{E_K}D)^{\phi=1}\cong$ $E \otimes_{E_K} D$ *in the category of* (ϕ, G_K) -modules via the map $\lambda \otimes x \mapsto \lambda x$ *. In particular,* $D \cong (E \otimes_{\mathbb{F}_p} (E \otimes_{E_K} D)^{\phi=1})^{H_K}$ via the above isomorphism.

Proof. Since $E \cong \mathbb{F}_p((T))$ ^{sep} is separably closed of characteristic *p*, $E \otimes_{E_K} D$ admits a basis fixed by ϕ by Theorem 4.9. Therefore, $(E \otimes_{E_K} D)^{\phi=1}$ has dimension $n.$

The remaining proof is similar to the one of Proposition 4.8.

 \Box

Therefore[, we have esta](#page-13-0)blished the following equivalence of categories.

 ${\bf Theorem~4.11.}$ *There is an equivalence of abelian categories* ${\rm Rep}_{\mathbb{F}_p}(G_K)\cong {\rm Mod}_{E_K}^{\mathsf{\'et}}(\phi,\Gamma_K)$ given by $V\, \mapsto\, (E\, \otimes_{\mathbb F_p} V)^{H_K}$ and $D\, \mapsto\, (E\, \otimes_{E_K} D)^{\phi=1}$ for $V\, \in\, \mathrm{Rep}_{\mathbb F_p}(G_K)$ and $D\, \in\,$ $\operatorname{Mod}^{\text{\'et}}_{E_K}(\phi, \Gamma_K)$.

By Theorem 3.9, one can prove the following proposition mimicking the proof of Proposition 4.8.

Propo[sition 4.12.](#page-9-0) *Suppose V is a* \mathbb{Z}_p *-representation of* G_K *of dimension n* and $D(V) :=$ $D(V) :=$ $(A\otimes_{\mathbb{Z}_p}V)^{H_K}.$ Then $D(V)$ is an étale (ϕ, Γ_K) -module over A_K of dimension n , $A\otimes_{A_K}D(V)\cong$ $A \otimes_{\mathbb{Z}_p} V$ *in the category of* (ϕ, G_K) *-modules via the map* $\lambda \otimes x \mapsto \lambda x$ *. In particular,* $V \cong (A \otimes_{A_K} D(V))^{\phi=1}$ *via the above isomorphism.*

By successive approximation, we have the following corollary of Theorem 4.9.

Corollary 4.13. *If R is a commutative ring which is complete with respect to the p-adic topology, R/pR is a separably closed field of characteristic p, R is e[quipped with](#page-13-0) a Frobenius endomorphism φ lifting the Frobenius on R/pR, and V is an étale φ-module over R, then V admits a basis fixed by* ϕ *and* $1 - \phi$: $V \rightarrow V$ *is surjective.*

Similarly, we have the following proposition for A and \mathbb{Z}_p and the equivalence of categories.

Proposition 4.14. *Suppose D* is an étale (ϕ, Γ_K) -module over A_K of dimension *n*. Then $(A\otimes_{A_K}D)^{\phi=1}$ is a \Z_p -representation of G_K of dimension n and $A\otimes_{\Z_p}(A\otimes_{A_K}D)^{\phi=1}\cong$ $A \otimes_{A_K} D$ *in the category of* (ϕ, G_K) -modules via the map $\lambda \otimes x \mapsto \lambda x$ *. In particular,* $D \cong (A \otimes_{\mathbb{Z}_p} (A \otimes_{A_K} D)^{\phi=1})^{H_K}$ *via the above isomorphism.*

 ${\bf Theorem~4.15.}$ *There is an equivalence of abelian categories* ${\rm Rep}_{\mathbb{Z}_p}(G_K)\cong {\rm Mod}_{A_K}^{\text{\'et}}(\phi,\Gamma_K)$ given by $V\, \mapsto\, (A\otimes_{\mathbb{Z}_p}V)^{H_K}$ and $D\, \mapsto\, (A\otimes_{A_K}D)^{\phi=1}$ for $V\, \in\, \mathrm{Rep}_{\mathbb{Z}_p}(G_K)$ and $D\, \in\,$ $\text{Mod}_{A_K}^{\text{\'et}}(\phi, \Gamma_K)$.

As said at the end of Section 3.2, there is no analog of Hilbert's theorem 90 for *B*. Hence, we can only derive the equivalence of categories from the results for *AK*. To do this, we need to modify the definition [for étale](#page-8-0) (ϕ, Γ_K) -modules over B_K as follows.

Definition 4.16 (Etale (ϕ, Γ_K) -modules over B_K). An étale (ϕ, Γ_K) -module over B_K is a (ϕ, Γ_K) -module D of dimension n over B_K such that there is a basis for D in which $\text{Mat}(\phi) \in \text{GL}_n(A_K).$

Lemma 4.17. *Every continuous* \mathbb{Q}_p -representation *V* of dimension *n* of G_K admits a \mathbb{Z}_p *lattice stable under* G_K .

Proof. Pick a basis for *V*. The basis spans a \mathbb{Z}_p -lattive *L* of *V*. Since \mathbb{Z}_p is open in \mathbb{Q}_p , $GL_n(\mathbb{Z}_p) = GL_n(\mathbb{Q}_p) \cap Mat_n(\mathbb{Z}_p)$ is an open subgroup of $GL_n(\mathbb{Q}_p)$. Thus, the subgroup H of G_K consisting of elements g such that $g\mathcal{L} \subset \mathcal{L}$ is an open subgroup of G_K . Since G_K is compact, H is of finite index. Then $\sum_{g \in G} gT$ is a finite sum and is a stable \mathbb{Z}_p -lattice in *V* . \Box

Proposition 4.18. *Suppose V is a* \mathbb{Q}_p -representation of G_K of dimension *n* and $D(V) :=$ $(B\otimes_{\mathbb{Q}_p}V)^{H_K}.$ Then $D(V)$ is an étale (ϕ, Γ_K) -module over B_K of dimension n , $B\otimes_{B_K}D(V)\cong$ $B \otimes_{\mathbb{Q}_p} V$ *in the category of* (ϕ, G_K) *-modules via the map* $\lambda \otimes x \mapsto \lambda x$ *. In particular, V* \cong $(B \otimes_{B_K} D(V))$ $\phi=1$ *via the above isomorphism.*

Proof. By the above lemma, pick a stable \mathbb{Z}_p -lattice $\mathcal L$ of B . By Theorem 3.9, $A\otimes_{\mathbb{Z}_p}\mathcal L\simeq A^n$ as an A -representation of H_K . Thus, $B \otimes_{\mathbb{Q}_p} V \simeq B^n$ as B -representations of H_K . The remaining proof is similar to Proposition 4.8.

It remains to show that $D(V)$ is étale. Note that

$$
B_K \otimes_{A_K} D(\mathcal{L}) := B_K \otimes_{A_K} (A \otimes_{\mathbb{Z}_p} \mathcal{L})^{H_K} \cong (B_K \otimes_{A_K} A \otimes_{\mathbb{Z}_p} \mathcal{L})^{H_K} \cong (B \otimes_{\mathbb{Z}_p} \mathcal{L})^{H_K} \cong D(V)
$$

in the category of (ϕ, Γ_K) -modules. Therefore, an A_K -basis for $D(\mathcal{L})$ induces a B_K -basis $D(V)$. Thus, $D(V)$ is étale. \Box

Proposition 4.19. *Suppose D is an étale* (ϕ, Γ_K) *-module over* B_K *of dimension n*. Then $(B\otimes_{B_K}D)^{\phi=1}$ is a \mathbb{Q}_p -representation of G_K of dimension n and $B\otimes_{\mathbb{Q}_p}(B\otimes_{B_K}D)^{\phi=1}\cong$ $B \otimes_{B_K} D$ *in the category of* (ϕ, G_K) -modules via the map $\lambda \otimes x \mapsto \lambda x$ *. In particular,* $D \cong (B \otimes_{\mathbb{Q}_p} (B \otimes_{B_K} D)^{\phi=1})^{H_K}$ *via the above isomorphism.*

Proof. Since *D* is étale over B_K , there is a submodule D_0 of *D* such that $D \cong B_K \otimes_{A_K} D_0$ as ϕ, Γ_K -modules. Then Theorem 4.15 implies that $A \otimes_{A_K} D_0 \cong A \otimes_{\mathbb{Z}_p} (A \otimes_{A_K} D_0)^{\phi=1}$. Thus,

$$
B \otimes_{B_K} D \cong B \otimes_{A_K} D_0 \cong B \otimes_{\mathbb{Z}_p} (A \otimes_{A_K} D_0)^{\phi=1} \cong B \otimes_{\mathbb{Q}_p} (\mathbb{Q}_p \otimes_{\mathbb{Z}_p} (A \otimes_{A_K} D_0)^{\phi=1})
$$

in the category of (ϕ, Γ_K) -modules. Since $B^{\phi=1}=\mathbb{Q}_p$, $\mathbb{Q}_p\otimes_{\mathbb{Z}_p}(A\otimes_{A_K}D_0)^{\phi=1}\cong (B\otimes_{B_K}D)$ $(D)^{\phi=1}$. \Box

Therefore, we have finally proved the following theorem.

 ${\bf Theorem~4.20.}$ *There is an equivalence of abelian categories* ${\rm Rep}_{\mathbb Q_p}(G_K)\cong {\rm Mod}_{B_K}^{\text{\'et}}(\phi,\Gamma_K)$ given by $V\, \mapsto\, (B\otimes_{\mathbb{Q}_p}V)^{H_K}$ and $D\, \mapsto\, (B\otimes_{B_K}D)^{\phi=1}$ for $V\, \in\, \mathrm{Rep}_{\mathbb{Q}_p}(G_K)$ and $D\, \in\,$ $\mathrm{Mod}^{\text{\'et}}_{B_K}(\phi, \Gamma_K)$.

5 Robba rings

In this section, we will just rush through the construction of the Robba ring and its properties without any proof. We recommend [Wan20] for detailed proofs.

5.1 Overconvergent elem[ents](#page-22-4)

 ${\sf Recall\ that}\ \tilde E:=\mathbb C_p^\flat,\ \tilde A:=\mathbb W_P(\mathbb C_p^\flat)$ and for each $k>0,\ w_k\colon \tilde A\to \mathbb R\cup\{+\infty\}$ is given by $w_k(x) := \inf_{i \leqslant k} \text{val}_{\tilde{E}}(x_i)$ for any $x = \sum_{i>0} p^i [x_i] \in \mathbb{W}_P(\mathbb{C}^\flat_p).$

For any $r > 0$, let

$$
\tilde{A}^{\dagger,r}:=\{x\in\tilde{A}\colon w_k(x)+k\frac{pr}{p-1}\geqslant 0\,\,\text{for all}\,\,k>0\,\,\text{and}\,\,\lim_{k\rightarrow+\infty}\Bigl(w_k(x)+k\frac{pr}{p-1}\Bigr)=+\infty\}
$$

Note that if $r_2 > r_1 > 0$, then $\tilde{A}^{\dagger,r_2} \supset \tilde{A}^{\dagger,r_1}.$

Lemma 5.1 (cf. [Wan20, Lemma 1.4]). *The set* $\tilde{A}^{\dagger,r}$ *is a subring of* \tilde{A} *which is stable under* $G_{\mathbb{Q}_p}$ *and* $\phi \colon \tilde{A}^{\dagger,r} \to \tilde{A}^{\dagger,pr}$ *is a bijection.*

Let ν_r : $\tilde{A}^{\dagger,r} \to \mathbb{R}_{\geqslant 0}$ $\tilde{A}^{\dagger,r} \to \mathbb{R}_{\geqslant 0}$ $\tilde{A}^{\dagger,r} \to \mathbb{R}_{\geqslant 0}$ given by $\nu_r(x) := \inf_{k>0} (w_k(x) + k \frac{pr}{p-1})$ *p−*1). The following lemma shows that this is a valuation on $\tilde{A}^{\dagger,r}$. It will make $\tilde{A}^{\dagger,r}$ into a complete valuation ring, whose topology is compatible with the action of $G_{\mathbb{Q}_p}$ and the map ϕ .

Lemma 5.2 (cf. [Wan20, Lemma 1.5]). *For any* $r > 0$ *and* $x, y \in \tilde{A}^{\dagger,r}$,

- *1.* $\nu_r(x) = +\infty$ *if and only if* $x = 0$ *.*
- 2. $\nu_r(x+y) \geq \inf(\nu_r(x), \nu_r(y)).$
- *3.* $\nu_r(xy) = \nu_r(x) + \nu_r(y)$.
- *4.* $\nu_{pr}(\phi(x)) = p\nu_r(x)$.
- *5.* $\nu_r(px) = \nu_r(x) + \frac{pr}{r-1}$.
- *6.* $\nu_r(\sigma(x)) = \nu_r(x)$ for all $\sigma \in G_{\mathbb{Q}_p}$.

Proposition 5.3 (cf. [Wan20, Proposition 1.7]). The ring $\tilde{A}^{\dagger,r}$ is Hausdorff and complete *with respect to the topology given by νr.*

Lemma 5.4. For all $r > 0$ [, th](#page-22-4)e action of $G_{\mathbb{Q}_p}$ on $\tilde{A}^{\dagger,r}$ is continuous and $\phi: \tilde{A}^{\dagger,r} \to \tilde{A}^{\dagger,pr}$ is *a homeomorphism.*

As before, let $\tilde{B}^{\dagger,r} := \tilde{A}^{\dagger,r}[1/p]$. We can extend ν_r to $\tilde{B}^{\dagger,r}$ via the 5-th part of Lemma 5.2. Note that Lemma 5.2 also holds for $\tilde{B}^{\dagger,r}$. Furthermore, for each finite extension *K* of \mathbb{Q}_p , let $\tilde{B}^{\dagger,r}_K := (\tilde{B}^{\dagger,r})^{H_K}$ and $\tilde{A}^{\dagger,r}_K := (\tilde{A}^{\dagger,r})^{H_K}$. Let $\tilde{B}^{\dagger} := \cup_{r>0} \tilde{B}^{\dagger,r}.$

Remark 5.5. *[The rin](#page-16-0)g* $\tilde{A}^{\dagger,r}$ *is not the ring of integers in* $\tilde{B}^{\dagger,r}$ *, but is the ring of integers in* $\tilde{B}^{\dagger,r} \cap \tilde{A}$ *.*

Similarly, let $B^{\dagger,r}:=\tilde{B}^{\dagger,r}\cap B$, $B^{\dagger,r}_K:=(B^{\dagger,r})^{H_K}$, $B^{\dagger}:=\cup_{r>0}B^{\dagger,r}$ and $B^{\dagger}_K:=\cup_{r>0}B^{\dagger,r}_K$.

Proposition 5.6 (cf. [Wan20, Proposition 1.9])**.** *The ring B*˜*† is a field. As a consequence,* $\tilde{B}^{\dagger}_K, B^{\dagger}$ and B^{\dagger}_K are fields.

5.2 Robba rings

Lemma 5.7 (cf. [Ber10, Lemma 22.1])**.** *Suppose K is a finite extension of* Q*p. There exists* $r(K)>0$ and $\pi_K^\dagger\in A_K^{\dagger,r(K)}$, such that the image $\overline{\pi}_K$ of π_K^\dagger in E_K is a uniformizer and $\pi_K^{\dagger}/[\overline{\pi}_K]_P$ *is a uni[t in](#page-22-1)* $A_K^{\dagger,r(K)}$ *.*

Suppose K is an extension of \mathbb{Q}_p and $r>0.$ Let \mathcal{A}_K^r be the ring of formal power series $f(T) = \sum_{n \in \mathbb{Z}} a_n T^n$ with coefficients in \mathcal{O}_K , such that $\text{val}_p(a_n) + nr \geq 0$ for all *n* and $\lim_{n\to\infty}(\text{val}_p(a_n)+nr)=+\infty$. For any $f\in\mathcal{A}_K^r$, define $\omega_r(f)=\inf_{n\in\mathbb{Z}}(\text{val}_p(a_n)+nr)$. It can be easily shown that ω_r is a valuation on \mathcal{A}_K^r . Therefore, \mathcal{A}_K^r is isomorphic to the ring of analytic functions with coefficients in \mathcal{O}_K convergent on the annulus $\{0 < \text{val}_p(T) \leq r\}$ and bounded by 1 with respect to the norm associated to ω_r . Let $\mathcal{B}_K^r:=\mathcal{A}_K^r[1/p].$ We can also extend ω_r to \mathcal{B}_K^r . Then \mathcal{B}_K^r is isomorphic to the ring of bounded analytic functions with coefficients in *K* convergent on the annulus ${0 < val_p(T) \leq r}$.

Let $e_K := [K_\infty : (K_0)_\infty]$, which is the ramification index of $K_\infty/(\mathbb{Q}_p)_\infty$.

Theorem 5.8 (cf. [Wan20, Theorem 1.23]). *For all* $r > r_K$ *,*

- $1.$ *there is an isomorphism of topological rings* ${\cal A}_{K_0}^{\frac{1}{re_K}} \to A_K^{\dagger,r}$ *given by* $f \mapsto f(\pi_K^\dagger)$ *such that* $\frac{pr}{p-1}\omega_{\frac{1}{re_K}}(f) = \nu_r(f(\pi_K^{\dagger})),$ $\frac{pr}{p-1}\omega_{\frac{1}{re_K}}(f) = \nu_r(f(\pi_K^{\dagger})),$ $\frac{pr}{p-1}\omega_{\frac{1}{re_K}}(f) = \nu_r(f(\pi_K^{\dagger})),$ and
- $2.$ *there is an isomorphism of topological rings* $\mathcal{B}^{\frac{1}{re_K}}_{K_0} \to B^{\dagger,r}_K$ *given by* $f \mapsto f(\pi_K^\dagger)$ *such that* $\frac{pr}{p-1}\omega_{\frac{1}{re_K}}(f) = \nu_r(f(\pi_K^{\dagger}))$ *.*

6 Cherbonnier–Colmez's theorem

Recall that in Section 4.2, we proved the equivalences between *p*-adic Galois representations and (ϕ, Γ) -modules. In this subsection, we want to push the equivalence further to (ϕ, Γ) modules over [overconverg](#page-12-0)ent elements, which is the Cherbonnier–Colmez's theorem. To do this, we need to introduce the technique by Colmez-Sen-Tate to overcome the absence of generalized Hilbert's theorem 90.

6.1 The Colmez–Sen–Tate conditions

Let *K* be a finite extension of \mathbb{Q}_p , $\tilde{\Omega}$ be a \mathbb{Q}_p -algebra and $\text{val}_{\Omega} : \tilde{\Omega} \to \mathbb{R} \cup \{+\infty\}$ be a map such that

- 1. $\operatorname{val}_{\Omega}(x) = +\infty$ if and only if $x = 0$.
- 2. $\operatorname{val}_{\Omega}(x+y) \geq \inf(\operatorname{val}_{\Omega}(x), \operatorname{val}_{\Omega}(y)).$
- 3. $\operatorname{val}_{\Omega}(xy) \geq \operatorname{val}_{\Omega}(x) + \operatorname{val}_{\Omega}(y)$.
- 4. $\operatorname{val}_{\Omega}(p) > 0$ and $\operatorname{val}_{\Omega}(px) = \operatorname{val}_{\Omega}(p) + \operatorname{val}_{\Omega}(x)$ if $x \in \tilde{\Omega}$.

Assume that $\tilde{\Omega}$ is complete with respect to the topology defined by val $_{\Omega}$ and $\tilde{\Omega}$ is equipped with a G_K -action such that val_{Ω} is G_K -invariant.

We say that Ω satisfies the Colmez–Sen–Tate conditions if there exists constants $c_1, c_2, c_3 \in$ $\mathbb{R}_{\geqslant 0}$ such that the following three conditions hold.

- (CST1) For every finite extension M/L of K , there exists $\alpha \in \tilde{\Omega}^{H_M}$ such that $\text{val}_{\Omega}(\alpha) > -c_1$ and $\text{Tr}_{M_{\infty}/L_{\infty}}(\alpha) = 1$.
- (CST2) For every finite extension *L* of *K*, there exists $n(L) \in \mathbb{Z}_{>0}$ and an increasing sequence ${\Omega}_{L,n}$ *_{* $n \ge n(L)$ *} of closed sub-*Q_{*p*}-algebras of $\tilde{\Omega}^{H_L}$ along with maps $R_{L,n}$: $\tilde{\Omega}^{H_L} \to \Omega_{L,n}$ satisfying the following properties.
	- (a) If $x \in \tilde{\Omega}^{H_L}$, then $\text{val}_{\Omega}(R_{L,n}(x)) \geq \text{val}_{\Omega}(x) c_2$ and $R_{L,n}(x) \to x$ as $n \to \infty$.
	- (b) If L_2/L_1 is finite, then $\Omega_{L_1,n} \subset \Omega_{L_2,n}$ and $R_{L_2,n}|_{\tilde{\Omega}^{H_{L_1}}} = R_{L_1,n}$.
	- (c) $R_{L,n}$ is $\Omega_{L,n}$ -linear and is the identity on $\Omega_{L,n}$.
	- (d) If $g \in G_K$, then $g(\Omega_{L,n}) = \Omega_{g(L),n}$ and $g \circ R_{L,n} = R_{g(L),n} \circ g$.

Let $\Omega_{L,\infty} := \cup_{n \geq n(L)} \Omega_{L,n}$.

(CST3) For every finite extension *L* of *K*, there exists $m(L) \geq n(L)$ such that for all $\gamma \in \Gamma_L$ and $n \geq \sup(\text{val}_p(\chi(\gamma) - 1), m(L))$, $1 - \gamma$ is invertible on $X_{L,n} := (1 - R_{L,n})(\tilde{\Omega}^{H_L})$ and $\operatorname{val}_{\Omega}((\gamma - 1)^{-1}x) \geq \operatorname{val}_{\Omega}(x) - c_3$ for all $x \in X_{L,n}$.

Example 6.1 (cf. [Ber10, §10 and §19]). Let $\Omega := \mathbb{C}_p$ with *p*-adic valuation, $\Omega_{L,n} := L_n$ be *the finite totally ramified extension over L constructed by Lubin-Tate and Rⁿ is the Tate's normalized traces.* [Then](#page-22-1) Ω *satisfies the CST conditions.*

 $\rm The$ point of the CST conditions is that we can reduce ${\rm Rep}_{\tilde\Omega}(G_K)$ to ${\rm Rep}_{\Omega_{L,n}}({\rm Gal}(L_\infty/K))$ for some finite extension *L* of *K* and $n \ge n(L)$. In particular, the reduction have two steps.

- 1. The condition CST1 helps us to reduce to $\text{Rep}_{\tilde{\Omega}^{H}L}(\text{Gal}(L_{\infty}/K))$ (cf. [Ber10, Corollary 19.3]). This result is similar to the generalized Hilbert's theorem 90.
- 2. The conditions CST2 and CST3 together approximate $\text{Rep}_{\tilde{\Omega}^H L}(\text{Gal}(L_\infty/K))$ $\text{Rep}_{\tilde{\Omega}^H L}(\text{Gal}(L_\infty/K))$ $\text{Rep}_{\tilde{\Omega}^H L}(\text{Gal}(L_\infty/K))$ through ${\rm Rep}_{\Omega_{L,n}}({\rm Gal}(L_\infty/K))$ (cf. [Ber10, Corollary 19.5]).

To be precise, we have the following theorems.

Theorem 6.2 (cf. [Ber10, Theor[em 19.1](#page-22-1)])**.** *If* Ω˜ *satisfies the CST conditions, then*

 $\text{colim}_{L} \text{colim}_{n \geq n(L)} H^{1}(\text{Gal}(L_{\infty}/K), \text{GL}_{d}(\Omega_{L,n})) \cong H^{1}(G_{K}, \text{GL}_{d}(\tilde{\Omega}))$ $\text{colim}_{L} \text{colim}_{n \geq n(L)} H^{1}(\text{Gal}(L_{\infty}/K), \text{GL}_{d}(\Omega_{L,n})) \cong H^{1}(G_{K}, \text{GL}_{d}(\tilde{\Omega}))$ $\text{colim}_{L} \text{colim}_{n \geq n(L)} H^{1}(\text{Gal}(L_{\infty}/K), \text{GL}_{d}(\Omega_{L,n})) \cong H^{1}(G_{K}, \text{GL}_{d}(\tilde{\Omega}))$

where the isomorphism is induced by the inflation maps.

Theorem 6.3 (cf. [Ber10, Theorem 19.6 and Theorem 19.8]). *Suppose* $W \in \text{Rep}_{\tilde{O}}(G_K)$ *of dimension d*. There exists a finite extension *L* of *K* and a finite free $\Omega_{L,\infty}$ -submodule $W_{L,\infty}$ \subset W^{H_L} of dimension d [such](#page-22-1) that $W_{L,\infty}$ is stable under $\mathrm{Gal}(L_\infty/K)$ and $W_{L,\infty}\otimes_{\Omega_{L,\infty}} \tilde{\Omega}\cong W$ *in* Rep $_{\tilde{\Omega}}(G_K)$.

Furthermore, $W_{L,\infty}$ *is the greatest* $\Omega_{L,\infty}$ *-sub-representation of* $Gal(L_{\infty}/K)$ *of* $W^{H_{L}}$ *.*

Proposition 6.4 (cf. [Ber10, §24]). Let $K := \mathbb{Q}_p$. There exists $r_K > 0$, such that for all $r>r_K$, $\tilde\Omega:=\tilde B^{\dagger,r}$ with ${\rm val}_\Omega:=\nu_r$ and $\Omega_{L,n}:=\phi^{-n}(B_L^{\dagger,p^nr})$ satisfy the CST conditions with *some maps RL,n define[d in \[B](#page-22-1)er10, §24].*

6.2 Cherbonnier–C[olmez](#page-22-1)'s theorem

Theorem 6.5 (Cherbonnier–Colmez)**.** *Suppose K is a finite extension of* Q*p. The functor* $V\mapsto D^\dag(V):=(B^\dag\otimes_{\mathbb{Q}_p}V)^{H_K}$ induces an equivalence between ${\rm Rep}_{\mathbb{Q}_p}(G_K)$ and ${\rm Mod}_{B_K^{\bf et}}^{{\bf et}}(\phi,\Gamma_K)$, *where a* (ϕ, Γ_K) *-modules over* B_K^{\dagger} *is étale if it is after base-changing to* B_K *.*

By definition, $\text{Mod}_{B_K^{\dagger}}^{\text{et}}(\phi,\Gamma_K)\cong \text{Mod}_{B_K}^{\text{et}}(\phi,\Gamma_K)$ by base-changing. Thus, we remain to show that D^{\dagger} is well-defined and $D(V)$ is naturally isomorphic to $B_K \otimes_{B_K^{\dagger}} D^{\dagger}(V)$, where $D(V) := (B \otimes_{\mathbb{Q}_p} V)^{H_K}$ as in Theorem 4.20.

The theorem is deduced from the following lemma and proposition. The idea is that firstly we use the CST-method to re[duce to a](#page-15-1) $\mathrm{Gal}(L_\infty/K)$ -submodule $D_L^{\dagger,r}$ of $D^\dagger(V)$ depending on the radius of convergence *r*. Since ϕ induces a homeomorphism $\tilde{B}^{\dagger,r} \to \tilde{B}^{\dagger,pr}$ for all $r > 0$ and the matrix of *φ* has only finite entries, we can raise the radius of convergence large enough to promote $D^{\dagger,r}_L$ to a (ϕ, Γ_K) -module. Finally, we extend the coefficient to get $D^{\dagger}(V).$

 ${\bf L}$ emma ${\bf 6.6.}$ *For any* $V\in \operatorname{Rep}_{{\mathbb Q}_p}(G_K)$ of dimension d , there is a finite extension L of K and $s(V)\in\mathbb{R}_{>0}$ such that for all $s\geqslant s(V)$, $(\tilde{B}^{\dagger,s}\otimes_{\mathbb{Q}_p}V)^{H_L}$ has a free $B_L^{\dagger,s}$ -submodule $D_L^{\dagger,s}$ of dimension d such that $D_L^{\dagger,s}$ is stable under G_K , $\tilde{B}^{\dagger,s}\otimes_{B_L^{\dagger,s}}D_L^{\dagger,s}\cong \tilde{B}^{\dagger,s}\otimes_{\mathbb{Q}_p}V$ via the map $\lambda\otimes x\mapsto \lambda x$ and $D_L^\dagger:=B_L^\dagger\otimes_{B_L^{\dagger,s}}D_L^{\dagger,s}\hookrightarrow \tilde{B}^\dagger\otimes_{\mathbb{Q}_p}V$ is stable under $\phi.$

Proof. Fix $r > 0$ such that $(\tilde{B}^{\dagger,r}, \nu_r, \phi^{-n}(B^{\dagger,p^nr}_L))$ satisfies the CST conditions. By Theorem 6.2, there is a finite extension L of K , $n \, \in \, \mathbb{Z}_{>0}$ and a finite free $\phi^{-n}(B_L^{\dagger,p^nr})$ submodule $D^{\dagger,r}_{L,n}$ of $(\tilde{B}^{\dagger,r}\otimes_{\mathbb{Q}_p}V)^{H_L}$ such that $D^{\dagger,r}_{L,n}$ is of dimension d and stable under G_K G_K [and](#page-19-0) $\tilde{B}^{\dagger,r} \otimes_{\phi^{-n}(B_{I}^{\dagger,p^{n}r})} D_{L,n}^{\dagger,r} \cong \tilde{B}^{\dagger,r} \otimes_{\mathbb{Q}_{p}} V.$ *L*

We want the coefficient to be in B_L^{\dagger,p^nr} , but not in $\phi^{-n}(B_L^{\dagger,p^nr}).$ Let $D_L^{\dagger,p^nr}:=\phi^n(D_{L,n}^{\dagger,r})$ in $\tilde{B}^\dag\otimes_{\mathbb{Q}_p}V.$ Then D_L^{\dag,p^nr} is stable under $G_K.$ Since ϕ is injective, D_L^{\dag,p^nr} is still finite free of dimension $d.$ Moreover, we have $\tilde{B}^{\dagger,p^nr}\otimes_{B^{\dagger,p^nr}_L}D^{\dagger,p^nr}_L\cong \tilde{B}^{\dagger,p^nr}\otimes_{\mathbb{Q}_p}V.$

Now we have to deal with the action of ϕ . For any $t>0$, let $B_{L,\infty}^{\dagger,t}:=\cup_{n\geqslant n(L)}\phi^{-n}(B_L^{\dagger,p^nt}).$ Note that $B_{L,\infty}^{\dagger,p^{n+1}r}\otimes_{B^{\dagger,p^{n}r}}D_{L}^{\dagger,p^{n+1}r}$ and $B_{L,\infty}^{\dagger,p^{n+1}r}\otimes_{\phi(B^{\dagger,p^{n}r})}\phi(D_{L}^{\dagger,p^{n+1}r})$ are both finite free $B_{L,\infty}^{\dagger,p^{n+1}r}$ -submodules of $(\tilde{B}^{\dagger,p^{n+1}r}\otimes_{{\mathbb Q}_p}V)^{H_L}$ of dimension d and stable under G_K . Thus, by Theorem 6.3, there exists a finite free $B_{L,\infty}^{\dagger,p^{n+1}r}$ -submodule $D_{L,\infty}^{\dagger,p^{n+1}r}$ of $(\tilde{B}^{\dagger,p^{n+1}r}\otimes_{{\mathbb Q}_p}V)^{H_L}$, such that the above two modules are contained in $D_{L,\infty}^{\dagger,p^{n+1}r}$. In particular, the matrix of ϕ μ [under a basis](#page-19-1) of $D^{ \dagger, p^nr}_L$ belongs to $\phi^{-m}(B^{ \dagger, p^{m+n+1}r}_L)$ for $m \in \mathbb{Z}_{>0}$ large enough.

We finish the proof by putting $s(V) := p^{m+n+1}r$.

Proposition 6.7 (cf. [Wan20, Theorem 2.20(1)]). *For any* $V \in \operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ *of dimension* d , let D^{\dagger}_L be the finite free $(\phi, \mathrm{Gal}(L_\infty/K))$ -module of dimension d over B^{\dagger}_L in the above lemma. Then $B_L \otimes_{B_L^\dagger} D_L^\dagger \cong (B \otimes_{\mathbb{Q}_p} V)^{H_L} =: D_L(V)$ $B_L \otimes_{B_L^\dagger} D_L^\dagger \cong (B \otimes_{\mathbb{Q}_p} V)^{H_L} =: D_L(V)$ $B_L \otimes_{B_L^\dagger} D_L^\dagger \cong (B \otimes_{\mathbb{Q}_p} V)^{H_L} =: D_L(V)$ in $\mathrm{Mod}^{\mathrm{\acute{e}t}}_{B_L}(\phi, \Gamma_L).$

Moreover, $D^\dagger(V)$ *is an étale* (ϕ, Γ_K) *-module over* B_K^{\dagger} *of dimension* d *and* $B_K \otimes_{B_K^{\dagger}}$ $D^{\dagger}(V) \cong D(V)$ *via the map* $\lambda \otimes x \mapsto \lambda x$ *, which is natural.*

Proof. Let D_L^{\dagger} be the Moreover, $\tilde{B}^\dagger\otimes_{B_L^\dagger}D_L^\dagger\cong \tilde{B}^\dagger\otimes_{\mathbb{Q}_p}V$ via the map $\lambda\otimes x\mapsto \lambda x.$ We want to compare both sides over rings without tilde.

Let $D_L:=B_L\otimes_{B_L^\dagger}D_L^\dagger.$ Then $\tilde{B}\otimes_{B_L}D_L\cong \tilde{B}\otimes_{\mathbb{Q}_p}V.$ Let $\mathcal L$ be a lattice in $V.$ Since $\tilde{B}=$ $\tilde{A}[1/p]$ and B_L is a subfield of \tilde{B} , $D_L \cap \tilde{A} \otimes_{\mathbb{Z}_p} \mathcal{L}$ is an A_L -lattice in D_L . Thus, D_L is étale by a similar argument in Proposition 4.18. By Theorem 4.20, there is a $W\in \mathrm{Rep}_{\mathbb{Q}_p}(G_K)$ such that $\tilde{B}\otimes_{\mathbb{Q}_p}W\cong \tilde{B}\otimes_{B_L}D_L\cong \tilde{B}\otimes_{\mathbb{Q}_p}V$ as (ϕ,G_K) -modules over $\tilde{B}.$ Since $\tilde{B}^{\phi=1}=\mathbb{Q}_p,$ $W\cong V$ in $\text{Rep}_{\mathbb{Q}_p}(G_K)$ by t[aking the](#page-14-1) ϕ -fixed poi[nts. Thus,](#page-15-1) $D_L \cong (B \otimes_{\mathbb{Q}_p} V)^{H_L}$ in $\text{Mod}_{B_L}^{\text{\'et}}(\phi, \Gamma_L).$

 \Box

Note that D^{\dagger}_L admits compatible monomorphisms to both $\tilde{B}^{\dagger}\otimes_{\mathbb{Q}_p}V$ and $B\otimes_{\mathbb{Q}_p}V$. $D^{\dagger}_L \hookrightarrow (B^{\dagger} \otimes_{{\mathbb Q}_p} V)^{H_L}$ in ${\rm Mod}_{B^{\dagger}_L}^{{\rm st}}(\phi,\Gamma_L).$ Note that $\dim((B^{\dagger}\otimes_{{\mathbb Q}_p}V)^{H_L})\leqslant\dim(V)=\dim(D_L)=\dim(D_L^{\dagger}).$ We have that $D_L^{\dagger}\cong(B^{\dagger}\otimes_{{\mathbb Q}_p}V)^{H_L}.$ $\textsf{Similarly, we have } B_L \otimes_{B_L^\dagger} D_L^\dagger \cong D_L(V) \, \, \text{in} \, \, \textsf{Mod}_{B_L}^{\textsf{\'et}}(\phi, \Gamma_L).$

Finally, we use the Galois descent to reduce to the field K . Note that $B_K^\dagger=(B_L^\dagger)^{H_K/H_L}.$ By Proposition 3.3, $H^1_{\text{cts}}(H_K/H_L,\text{GL}_d(B_L^\dagger))\cong 0$. Therefore, $D^\dagger(V)\cong \left((B^\dagger\otimes_{\mathbb{Q}_p}V)^{H_L}\right)^{H_K/H_L}$ is of dimension d , and $D^\dag(V)$ is étale since D_L is étale. Thus, $B_L^\dag\otimes_{B_K^\dag}D^\dag(V)\cong D_L^\dag.$ Hence,

$$
B \otimes_{B_K^{\dagger}} D^{\dagger}(V) \cong B \otimes_{B_L^{\dagger}} D_L^{\dagger} \cong B \otimes_{B_L} D_L(V) \cong B \otimes_{\mathbb{Q}_p} V.
$$

By taking H_K -fixed points on both sides, we get $B_K \otimes_{B_K^+} D^\dagger(V) \cong D(V)$ in ${\rm Mod}_{B_K}^{\text{\'et}}(\phi,\Gamma_L).$ \Box

References

- [BC09] Oliver Brinon and Brian Conrad. Cmi summer school notes on p-adic hodge theory. https://math.stanford.edu/~conrad/papers/notes.pdf, 2009. 3.7
- [Ber10] Laurent Berger. Galois representations and (,Γ)-modules. http://perso.ens[lyon.fr/laurent.berger/autrestextes/CoursIHP2010.p](https://math.stanford.edu/~conrad/papers/notes.pdf)df, 20[10.](#page-9-1) 3.1, 3.3, 3.6, 3.8, 4.1, 4.9, 5.7, 6.1, 1, 2, 6.2, 6.3, 6.4
- [FO22] [Jean-Marc Fontaine and Yi Ouyang. Theory of p-adic galois represe](http://perso.ens-lyon.fr/laurent.berger/autrestextes/CoursIHP2010.pdf)ntation[s.](#page-8-3) ht[tp:](#page-8-1) [//s](#page-9-2)[taff](#page-9-3)[.us](#page-11-1)[tc.e](#page-13-0)[du.](#page-17-2)[cn/~](#page-18-0)[yi](#page-19-2)[ou](#page-19-3)[yang](#page-19-0)[/ga](#page-19-1)l[ois](#page-19-4)rep.pdf, 2022. 4.5
- [SW20] Peter Scholze and Jared Weinstein. *Berkeley lectures on p-adic geometry*, [volume](http://staff.ustc.edu.cn/~yiouyang/galoisrep.pdf) 207 of *[Annals of Mathematics Studies](http://staff.ustc.edu.cn/~yiouyang/galoisrep.pdf)*. Princeton University [Pres](#page-11-2)s, Princeton, NJ, 2020. 2, 2.4, 2.12, 2.13, 2.2, 2.16, 2.18, 2.19
- [Wan20] Yupeng Wang. Overconvergent theory. http://faculty.bicmr.pku.edu.cn/ ~ruoc[hu](#page-2-1)[an/](#page-3-0)[2020s](#page-5-0)[umme](#page-5-1)r[/Wa](#page-5-2)[ng-Y](#page-6-3)u[peng](#page-6-1)[.pdf](#page-6-4), 2020. 5, 5.1, 5.2, 5.3, 5.6, 5.8, 6.7